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Recall that any system

dx
dt = f (x)

having a stable limit cycle can be mapped into a simple phase
model

dϑ
dt = 1

Defined on a circle S1. The mapping is a simple stretching on
the cycle itself (a cycle is a deformed circle), but can also be
defined off the cycle via isochrons.
We will show how to make such a transformation when the
system is coupled with some input signal. In particular we are
interested in networks of oscillators coupled in some way, and
the conditions under which then synchronize.
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Example - circadian rhythm

There is a certain piece of the brain which provides a 24 hour
cycle that influences sleeping etc.
It turns out that it is an oscillator, which can be reset by
bright light stimulus (Charles A. Czeisler 2003)
The phase resetting curve of the oscillator looks much like a
sinusoid with period [−12h, 12h] the origin at T0 which is the
minimum body temperature time. It turns out that

Twake =
2
3T0 + 5.4h

Assume I’m flying to California, the time shift is −9h. When
should I get out to the bright light in order to efficiently reset
by circadian oscillator assuming my Twake = 8am ?
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We have

8 : 00am =
2
3T0 + 5.4h⇒ T0 =

3
22.6 = 3.9 = 3 : 54am

My rhythm is 9 hours ahead of that in California, so I need to
delay my oscillator. That is I have to get as much sun as
possible before T0

T0 = 3 : 54 am CET = 6 : 54 pm Pacific
So I need to get out before 6:54pm on the first day (preferably
≈ 1pm, not earlier that 6 : 54am though). 6h spent in bright
sunlight shifts the oscillator by about 2 hours. So the next day
my T0 ≈ 8 : 54pm.
At the third day my T0 ≈ 10 : 54pm, fourth T0 ≈ 12 : 54am.
After the fifth day my rhythm should be completely reset.
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Assume wa have a system
dx
dt = f (x) + εp(t)

where p(t) is time dependent input, ε is small but not zero.
Whenever ε is sufficiently small, we call εp(t) a weak
coupling.
p(t) can be any waveform (we do not impose any restrictions
on it). It may be a continuous synaptic input, or a pulse train.
In particular it may have the form

p(t) =
∑

s
gs(x(t), xs(t))

(sum of synaptic inputs from a set of other oscillators).
The interesting question is whether such a coupled system can
be decomposed into a phase model.
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Figure: Even though isochrons can have a complex form, sufficiently near the
cycle they are collinear and equally spaced.
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Assume that ε is sufficiently small to assume, that the
isochrons near the point x on the cycle are collinear and
equally spaced.
Collinearity means, that the phase resetting of any point y on
the same isochron as x is the same as that of x
Equal spacing means, that phase resetting scales linearly with
the strength of the pulse.
Since PRC scales linearly with the strength of the pulse, we
can substitute the PRC by its linear approximation:

PRC(ϑ,A) ≈ ∂PRC(ϑ,A)

∂A

∣∣∣∣
A=0
· A = iPRC(ϑ) · A

iPRC stands for infinitesimal PRC, sometimes called linear
response (sometimes denoted Z (ϑ)).
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Lets now discretize the the input signal εp(t), such that
A = εp(tn)h where h is the small time interval (we change the
continuous signal into a step signal, with the step width equal
h).
We write the Poincaré phase map:

ϑ(tn+1) = [ϑ(tn) + PRC (ϑ(tn), εp(tn)h) + h] mod T

ϑ(tn+1) = [ϑ(tn) + iPRC (ϑ(tn)) · εp(tn)h + h] mod T

ϑ(tn + h) − ϑ(tn)

h = iPRC (ϑ(tn)) · εp(tn) + 1
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Finally we obtain:

dϑ
dt (tn) = lim

h→0

ϑ(tn + h) − ϑ(tn)

h =

= lim
h→0

iPRC (ϑ(tn)) · εp(tn) + 1

so

dϑ
dt = 1 + ε · iPRC (ϑ) · p(t)

which is the phase model for the coupled system!
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Kuramoto’s model

Consider another approach. Let ϑ : U ⊂ Rn → S1 be the
mapping that assigns a phase to points near the limit cycle.
Note that isochrons are level contours of that function, since
the phase is constant along any isochron.
Differentiating ϑ(x) with respect to time, using the chain rule
gives:

dϑ(x)
dt = ∇ϑ · dx

dt = ∇ϑ · f (x)

where ∇ϑ is the gradient of ϑ (the direction highest slope of
isochrons).
But on (and near) the limit cycle

dϑ(x)
dt = 1

(the phase advances constantly as time passes)
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We therefore get:
∇ϑ · f (x) = 1

Now applying the chain rule to the perturbed system:

dϑ(x)
dt = ∇ϑ · dx

dt = ∇ϑ · (f (x) + εp(t)) =

= ∇ϑ · f (x) +∇ϑ · εp(t) = 1 +∇ϑ · εp(t)

we obtain a phase model which has the same form as
previously. We note that:

∇ϑ(x) = iPRC(ϑ) = ∂PRC(ϑ,A)

∂A

∣∣∣∣
A=0

so Kuramoto’s approach is equivalent to that of Winfree.
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Another approach is the most general is by Ioel Gil’evich
Malkin.
Assume as above that the uncoupled oscillator has an
exponentially stable limit cycle. The the phase equation of the
weakly coupled system has the form:

dϑ
dt = 1 + εQ(ϑ) · p(t)

where the function Q : S1 → Rn is the solution of the adjoint
equation:

dQ
dϑ = −(Df (x(ϑ)))> Q(ϑ)

with the condition Q(0) · f (x(0)) = 1. Df (x(t)) is the
Jacobian matrix of f .
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It turns out that the three approaches are all equivalent and:

∇ϑ(x) = iPRC(ϑ) = Q(ϑ)

In order to derrive the phase equation of coupled oscillators
we therefore need to obtain the infinitesimal PRC either from
ordinary PRC normalized by the amplitude of stimuli,
analyzing isochrons or solving the adjoint equation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 13 13/37



Introduction
Weak coupling

Phase models of coupled oscillators
Recap

Case study - two coupled oscillators
Chains and networks

Let us now derive the models for coupled oscillators, that is:

dxi
dt = fi(xi) + ε

n∑
j=1

gij(xi , xj), xi ∈ Rm

for i = 1...n. Assume for simplicity that uncoupled oscillators
(ε = 0) have equal periods Ti = T .
Applying any of the methods we get the phase model

dϑi
dt = 1 + εiPRC(ϑi) ·

pi(t)︷ ︸︸ ︷
n∑

j=1
gij(xi(ϑi), xj(ϑj))

The original model is defined in Rmn, while the phase model is
defined on the torus Tn, x(ϑ) is the position on the cycle in
Rm of a point whose phase is ϑ
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We are mostly interested with phase deviations from the
original periodicity, it therefore useful to make a substitution
and represent ϑ = t +ϕ where t is the uniform time, while ϕ
is de deviation from the original phase. In consequence we get:

dϕi
dt = εiPRC(t +ϕi) ·

n∑
j=1

gij(xi(t +ϕi), xj(t +ϕj))

The system can be further reduced by averaging out t (which
is fast compared to ϕ):

dϕi
dt = ε ·

n∑
j=1

∫T

τ=0
iPRC(τ)gij(xi(τ), xj(τ+ϕj −ϕi))dτ
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Denote:

Hij(ϕj −ϕi) =

∫T

τ=0
iPRC(τ)gij(xi(τ), xj(τ+ϕj −ϕi))dτ

Note that this interaction function depends only on the phase
difference of oscillator i and j . iPRC in the integral accounts
for the intrinsic oscillators phase resetting properties, while gij
accounts for the coupling properties (whether it is a synapse
of some response profile, gap junction, delta pulse etc).
Moreover

ωi = Hii(ϕi −ϕi) = Hii(0)

describes the constant frequency deviation from the uncoupled
oscillations due to a self interaction.
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All in all we get the system

dϕi
dt = εωi + ε

∑
j 6=i

Hij(ϕj −ϕi)

a phase model for coupled oscillators.
A particularly useful special case is the Kuramoto phase model

dϕi
dt = ωi +

∑
j 6=i

cij sin(ϕj −ϕi)

in which the interaction function has a simple sinusoidal form.
The model is nice for analytical studies, but the lack of any
even component in the interaction function is rather
degenerate.
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Two coupled oscillators

Consider two coupled oscillators in the most general form:

dϑ1
dt = h1(ϑ1, ϑ2)

dϑ2
dt = h2(ϑ1, ϑ2)

Since ϑ1, ϑ2 ∈ S1, the joint state of the system falls on a
2-torus T2 = S1 × S1

The trajectories on the torus cannot cross, and can be
periodic or quasiperiodic. A periodic orbit on a torus is called
a torus knot.
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Two coupled oscillators

We say that two oscillators are frequency locked if their joint
trajectory is a p : q periodic orbit on the torus (p : q knot).
1 : 1 frequency locking is called entrainment.
Moreover we say that two oscillators are p : q phase locked if
they are p : q frequency locked and

qϑ1(t) − pϑ2(t) = lϑ1,ϑ2 = const

for any t where lϑ1,ϑ2 is called a phase lag.
1 : 1 phase locking is synchronization. Moreover
synchronization is in phase if lϑ1,ϑ2 = 0, anti-phase if
lϑ1,ϑ2 = T/2 and off-phase otherwise.
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Figure: 2/3 frequency locking and the corresponding torus knot.
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Figure: 2/3 phase locking (3ϑ1 + 2ϑ2 = const) and the corresponding torus
knot.
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Figure: 7/11 phase locking and the corresponding torus knot.
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Figure: Off-phase synchronization.
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Now lets get back to the phase model

dϕi
dt = εωi + ε

∑
j 6=i

Hij(ϕj −ϕi)

in the case of two oscillators. It is convenient to rewrite the
model in slow time τ = εt to obtain:

ϕ ′
1 = ω1 + H1(ϕ2 −ϕ1)

ϕ ′
2 = ω2 + H2(ϕ1 −ϕ2)

Let χ = ϕ2 −ϕ1, subtracting the equations we obtain a 1d
model:

χ ′ = ω+ G(χ)

where ω = ω2 −ω1 and G(χ) = H2(χ) − H1(−χ)
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Any stable equilibrium of:

χ ′ = ω+ G(χ)

corresponds to a phase locking solution of the coupled
oscillators.
All equilibria are solutions to G(χ) = −ω. When the
oscillators are identical then G(χ) = H(χ) − H(−χ) is an odd
function while ω = 0 and consequently χ = 0 and χ = T/2
are always solutions. χ = 0 is stable when
G ′(0) = −2H ′(0) < 0
The range of values taken by G established the tolerance to
frequency mismatch ω. When ω becomes too large, all
equilibria vanish via a saddle node bifurcation, leaving the
ghost attractor that results in cycle slipping (drifting).
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So far we derived a phase model for generally all to all
coupled oscillators. In its most general form the model is hard
to analyze.
Interesting things may happen when the coupling reflects
some topological structure like a chain or a grid.
Consider a chain:

ϕi = ωi + H+(ϕi+1 −ϕi) + H−(ϕi−1 −ϕi)

if all ωi are equal and H+(0) = H−(0) = 0 then obviously
synchrony is a solution (all ϕi equal). But when ωi 6= ωj
other solutions are possible.
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Any phase locked solution of

ϕ ′
i = ωi + H+(ϕi+1 −ϕi) + H−(ϕi−1 −ϕi)

has the form ϕi(τ) = ω0τ+ φi where ω0 is the common
frequency of oscillation and φi are phase shifts satisfying:

ω0 = ω1 + H+(φ2 − φ1)

ω0 = ωi + H+(φi+1 − φi) + H−(φi−1 − φi)

ω0 = ωn + H−(φn−1 − φn)

One can check easily by differentiating ϕi(τ) = ω0τ+ φi
with respect to τ that is satisfies the chain model.
Any solution with a monotonic sequence φi is called a
traveling wave.
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Figure: Traveling wave solution to a chain of coupled oscillators.
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The traveling wave exists when the frequencies ωi are not
equal. Assume the phase shift is constant, that is
χ = φi+1 − φi

Subtracting all of the conditions imposed on the solution from
the second we get

0 = ω2 −ω1 + H−(−χ)

0 = ω2 −ωi

0 = ω2 −ωn + H+(χ)

and since
ω0 = ω1 + H+(χ)

we have
ω0 = ω1 +ωn −ω2
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The wave should appear when ω1 6 ω2 = ... = ωn−1 6 ωn,
that is the two extreme oscillators are tuned up and down.
When the sequence of frequencies is monotonic, the wave may
also occur, but the case is harder to analyze.
A wave can also occur when all the frequencies are equal with
H+(0) 6= 0 or H−(0) 6= 0. For example:

ϕ ′
i = ω+ H+(ϕi+1 −ϕi)

(descending coupling, with ω0 = ω). If χ = ϕi+1 −ϕi is the
phase shift along the wave, then we have n − 1 conditions

H+(χ) = 0

and the traveling wave exists when H+ has a stable root at χ.
Note that the sign of χ, not the direction of coupling
determines the direction of the wave.
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Networks

Now consider a general network with the possibly all-to-all
coupling:

dϕi
dt = εωi + ε

∑
j 6=i

Hij(ϕj −ϕi)

The system has a stable solution if the phase deviation ϕ
remains constant, that is:

0 = ωi +
∑
j 6=i

Hij(ϕj −ϕi)

Assume we have a solution (φ1,φ2, . . .φn). How to
determine whether it is stable?
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The general condition is that the Jacobian matrix at φ has
negative real parts of the eigenvalues, except for one zero
eigenvalue which corresponds to the direction of constant
phase shift (phase shifted solution is still a solution since
phase difference φj − φi is not affected).

Theorem (Bard Ermentrout 1992)
Assume

aij = H ′
ij(φj − φi) > 0

the weighted, directed graph with adjacency matrix A = [aij ] is
strongly connected

then equilibrium φ is neutrally stable and the corresponding cycle
x(t + φ) is asymptotically stable.
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Now consider a planar grid of identical oscillators coupled via
sine (Kuramoto model):

dϕi
dt = 1 +

∑
j∼i

sin(ϕj −ϕi)

where j ∼ i means that j is a neighbor of i in the grid.
Synchrony is a solution since sin(0) = 0. Moreover it is stable,
since following Ermentrout condition sin ′(0) = cos(0) = 1 > 0
and the grid graph is strongly connected.
It turns out however, that it not the only stable solution! The
other solutions are rotating waves! Such waves are frequently
observed in cortical recordings...
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Figure: Rotating waves.
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Coupling via sin is a little degenerate since it is an odd
function and all the even components in the Fourier series are
zero.
Lets add some even component to the model:

dϕi
dt = 1 +

∑
j∼i

(sin(ϕj −ϕi) + β(cos(ϕj −ϕi) − 1))

for some β < 1. Synchrony remains the solution since
cos ′(0) = 0
The rotating waves solutions though get a little curl and
become spiral waves! Compare with http://www9.
georgetown.edu/faculty/wuj/propagationwave.html
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Figure: Spiral waves.
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Recapitulation

iPRC (infinitesimal PRC or linear response function) can be
derived using Winfree, Kuramoto and Malkin approach.
Knowing the iPRC one can create phase models of coupled
oscillators
Phase models can be further reduced to phase deviation
equations, with interaction functions being the coupling
profiles weighted by the iPRC over the whole period.
Phase models operate on a torus, where each torus knot
corresponds to a frequency locked solution.
Chains an grids of oscillators, even when the coupling is
synchronizing and the synchronous solution is stable, can have
other interesting solutions like rotating waves and spiral waves.
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