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Bifurcations

On the last lecture we’ve met four bifurcations of equilibria:
saddle node,
saddle node on invariant circle,
supercritical Andronov-Hopf,
subcritical Andronow-Hopf

We also met two bifurcations of cycles:
saddle homoclinic orbit
fold cycle

All of these bifurcations are of codimension 1, that is they
have one control parameter. In neural excitability it is usually
the input current.
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Bifurcations

The above bifurcations are important from
neuro-computational point of view, since they explain
transitions from resting to spiking and back.
Today we will study more complex bifurcations and their
relations to neural activity.
We will be interested in cases, when two or more bifurcations
occur simultaneously, leading to bifurcations of higher
codimension.
First we will complete the list of codimension one bifurcations
on the plane, and sketch the situations which might happened
in 3d.
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Heteroclinic orbit bifurcation

We have one more codimension one bifurcation in 2d left,
namely heteroclinic orbit bifurcation
In this case a heteroclinic trajectory changes its destination,
hitting a saddle point
This bifurcation is global, does not change the stability of any
equilibria, does not create cycles.
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Heteroclinic orbit bifurcation

Figure: Heteroclinic orbit bifurcation
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Summary - codimension 1 in 2d

We have therefore
saddle node,
saddle node on invariant circle,
supercritical Andronov-Hopf,
subcritical Andronow-Hopf
supercritical saddle-homoclinic orbit
subcritical saddle-homoclinic orbit
heteroclinic orbit
fold cycle

These are all codimension one bifurcations in 2d. But how do we
know that?
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Poincaré-Bendixon theorem

Theorem (Poincaré-Bendixon)
Given an autonomous ODE on the plain

dx
dt = F (x)

with continuous F , assume that solution x(t) stays in a bounded
region for all times. Then x(t) converges as t →∞ to an
equilibrium (with F (x) = 0) or to a single limit cycle.

Remark: the theorem rules out chaos in 2d.
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Poincaré-Bendixon theorem - sketch proof

Definition
A curve γ is a transverse to a vector field F if at any point γ(s)
the vector tangent to γ is linearly independent of the field F . In
other words γ is not tangent to field F at any point.

Definition
Omega limit set ω+(x0) of an orbit x(t) passing through x0 is
the set of points x for which there exists a sequence of times tn
such that x(tn) converges to x. Formally

ω+(x0) =
⋂

s>0
{x(t), t > s}

where A is a closure of set A.
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Poincaré-Bendixon theorem

A glimpse at 3d systems
Back to 2d, codimension 2 and more

Recap

Poincaré-Bendixon theorem - sketch proof

Lemma
The vector field F cannot change the direction along the
transverse curve γ

Since F is continuous, changing direction would require (from Bolzano’s
intermediate value theorem), to have the component orthogonal to
γ be equal zero, which would mean, that the field is tangent to γ.
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Poincaré-Bendixon theorem - sketch proof

Lemma
Let γ be a transverse curve and x(t) a trajectory. If x(t) crosses γ
in more than one point, successive crossing points form a
monotonic sequence on the arc γ.

Let γ(s1) = x(t1) and γ(s2) = x(t2) be the crossing points. We can
assume that s1 < s2 (otherwise the curve can be easily reparametrized).
The union of two smooth curves {x(t), t1 < t < t2} and {γ(s), s1 <
s < s2} forms a closed piecewise smooth curve, which by Jordan’s
curve theorem splits the plain into to two regions. For t > t2 x(t)
stays in one of those regions, for the next crossing we therefore have
s3 > s2.
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Poincaré-Bendixon theorem - sketch proof

x(t)

x(t0)

x(t1)

ϒ

Figure: Intersections of a transverse γ and the trajectory x(t) must form a
monotonic sequence
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Poincaré-Bendixon theorem - sketch proof

Lemma
Omega limit set ω+(x0) can only have one point in common with
any transverse γ.

By definition ω+(x0) of an orbit x(t) is the set of points x for
which there exists a sequence of times tn such that x(tn) converges
to x . Assume there are two points of intersection with the transverse
x(t1) and x(t2) which belong to ω+(x0). There exists a sequence
of times τn > t1 for which lim x(τn) = x(t2). But there also exists
sequence of times τm > t2 for which lim x(τm) = x(t1) (because
x(t1) belongs to ω+(x0)). But this contradicts the fact, that the
sequence of crossings is monotonic on γ.
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Poincaré-Bendixon theorem - sketch proof

Given y0 ∈ ω+(x0) we have that y(t) with y(0) = y0 is defined for
all times and stays in ω+(x0). Therefore either

ω+(x0) contains a fixed point, in which case ω+(x0) simply is
the fixed point.
y0 is a regular point, therefore there exists transverse γ
passing it. ω+(x0) ∩ γ has only one point. Since trajectory
passing through y0 converges arbitrarily close to y0 (since it is
contained in ω+(x0)), orbit y(t) through y0 has to form a
single limit cycle.

Q.E.D.
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New bifurcations in 3d
Quasi-periodicity
Chaos

New bifurcations in 3d

What can possibly happen in 3d?
There can be no new bifurcations of equilibria (of codimension
one), since 3x3 Jacobian matrix can have a simple zero
eigenvalue or a pair of complex conjugate eigenvalues.
There are however new bifurcations of cycles.
As we will se the Poincaré-Bendixon theorem does not hold in
3d, and consequently there are some new types of attractors
(including the so called strange attractors).
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Saddle-focus homoclinic orbit

Saddle-focus is a fixed point which is repelling in one
direction, but in the orthogonal plane is an attracting focus (it
can also be the other way round)
Saddle-focus homoclinic orbit bifurcations occurs when a
periodic orbit becomes homoclinic to the saddle-focus. The
bifurcation is very similar to the saddle-homoclinic bifurcation,
but here there are more degrees of freedom.
The bifurcation occurs in two flavors - subcritical and
supercritical.
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Saddle-focus homoclinic orbit

Figure: Supercritical saddle-focus homoclinic bifurcation
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Flip

Flip bifurcation occurs when two cycles of opposite stabilities
collide. One of the cycles has to be of twice the period of the
other one.
The bifurcation (sometimes called period doubling bifurcation)
looks as if there were three cycles (two say unstable on the
inside and the outside and one say stable in the middle)
The bifurcation actually appears in 2d, but the space has to
have the Möbius strip topology
There are two flavors - supercritical and subcritical.
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Flip

Figure: Subcritical flip bifurcation
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Neimark-Sacker torus bifurcation

When an unstable invariant torus (by the way - a new
attractor - torus) shrinks into a stable cycle inside (or the
other way round) we have the Neimark-Sacker torus
bifurcation
The cycle either looses or gains stability (depending on
whether the bifurcation is supercritical or subcritical)
This bifurcation is similar to the Andronov-Hopf bifurcation,
and is sometimes referred as to secondary Andronov-Hopf
bifurcation.
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Neimark-Sacker torus bifurcation

Figure: Subcritical Neimark-Sacker torus bifurcation
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Blue Sky Catastrophe

The Blue Sky Catastrophe (blue sky bifurcation) occurs when
stable and unstable periodic orbits merge.
At the critical bifurcation point there is a neutrally stable fold
cycle, but trajectories departing from certain vicinity at the
unstable side, come back arbitrarily near the cycle at the
stable side, possibly making a long way in the mean time.
Right when the cycle vanishes a large period, large amplitude
periodic orbit emerges seemingly out of nowhere (out of the
blue sky!)

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 7 21/53



Codimension 1 in 2d
Poincaré-Bendixon theorem

A glimpse at 3d systems
Back to 2d, codimension 2 and more

Recap

New bifurcations in 3d
Quasi-periodicity
Chaos

Blue Sky Catastrophe

Figure: Blue sky bifurcation
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Fold limit cycle on homoclinic torus

Two cycle merge, forming a fold cycle, which turns out to lie
in an invariant torus
When the cycle vanishes, a quasi-periodic trajectory emerges,
which always remains on the torus
The bifurcation is similar to blue sky catastrophe, but in that
case there was a periodic orbit. In this case it is quasi-periodic.
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Fold limit cycle on homoclinic torus

Figure: Fold limit cycle on homoclinic torus
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Quasi-periodicity

Definition
A continuous differentiable function f : R→ Rn is called
quasiperiodic if f (t) = g(ω1t,ω2t, ...ωnt) where g is a
differentiable function 2π periodic in every component, and
moreover frequencies ωi are incommesurable, that is there are no
such integers mi with

∑
m2

i > 0 for which
m1ω1 + m2ω2 + ...+ mnωn = 0 holds.

If f is a quasiperiodic trajectory of an autonomous dynamical sys-
tem, and f (t0) = y0, then for every ε > 0 there exists t such that
f (t) ∈ B(y0, ε). That is quasiperiodic trajectory always comes back
arbitrarily close to any of its previous values, but never hits exactly
the same point.
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Poincaré-Bendixon theorem

A glimpse at 3d systems
Back to 2d, codimension 2 and more

Recap

New bifurcations in 3d
Quasi-periodicity
Chaos

Quasi periodic orbit

Figure: Quasi periodic orbit
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Is Poincaré-Bendixon theorem valid in 3d?

The proof of Poincaré-Bendixon theorem depends on Jordan’s
curve theorem, which fails even for certain 2d topologies (for
example torus)
It cannot hold in 3d as well, since torus can be submerged in
3d space.
We have therefore new attractors like invariant torus and
other manifolds etc.
The orbits can be quasiperiodic (such an orbit will stay on an
invariant manifold).
But that is not the end. There can also be the so called
strange attractors with chaotic orbits!

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 7 27/53



Codimension 1 in 2d
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Chaos

There is one dynamic regime which is neither stable cycle,
neither quasiperiodic. The trajectories follow a strange
pattern, in which they seem to be attracted by some strange
manifold...
Any attempts to track down the stable manifold fail, since in
the end it seems to be infinitely complex spaghetti of
trajectories
In the chaotic regime the trajectory seems to behave
randomly, even though the system is fully deterministic.
Any tiny deviation in the initial conditions explodes
exponentially with time, the system exhibits the so called
butterfly effect (the flap of a butterfly’s wings in Brazil sets
off a tornado in Texas)
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Lorenz Attractor
Chaos is easy to spot in discrete mappings based on function it-
eration (e.g. the logistic map). It has also been tracked down in
differential dynamical systems by Edward Lorenz in 1972, in a seem-
ingly simple set of differential equations in 3d originating in weather
study:

dx
dt = σ(y − x)

dy
dt = x(ρ− z) − y

dz
dt = xy − βz

For parameters ρ = 28,σ = 10,β = 8/3 the systems behaves
strangely, spinning randomly around two ”fixed” points which seem
to be neither attracting nor repelling.
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Lorenz Attractor
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Figure: An orbit near Lorenz attractor switches ”randomly” between spinning
around two fixed points. The spaghetti like invariant set (the attractor) is hard
to track, since it is a fractal set.
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Chaos

For chaos to occur, the system has to
be sensitive to initial conditions (butterfly effect)
topologically mixing (for any two sets A and B there exists
integer N such that for t > N, φt(A) ∩ B 6= ∅, where φt is
the flow of the equation at time t)
periodic orbits must be dense (set A is dense when the closure
of A and the union of A and set of limits of sequences of
elements from A are equal)

Chaotic systems are hard to analyze, but they are in the focus of
interest of many contemporary mathematicians. Usually chaos oc-
curs via an (infinite) cascade of period doubling bifurcations. Some
chaotic behavior can also be present in the brain, nevertheless most
neurons seem to exhibit rather simpler dynamics.
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Chaos

Figure: Period doubling cascade in the logistic map iteration. Poincaré maps
of continuous systems look similarly. The diagram is known as the Feigenbaum
diagram.
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Back to 2d

Lets get back to 2d, where hopefully Poincaré-Bendixon theorem
works and neither chaos nor quasiperiodicity are possible.

We’ve seen some bifurcations with one equality condition and
certain inequality conditions imposed on the system.
What happens when some of the inequalities are not satisfied?
Usually still some bifurcation occurs, though more complex
one.
Recall that an equilibrium can be approximated via a linear
system (Hartman-Grobman theorem). A system at a non
degenerate bifurcation of an equilibrium (like the saddle node)
can be approximated by the quadratic normal form.
Similarly degenerate bifurcations can be approximated with
higher order normal forms
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Saddle-node homoclinic orbit

Saddle-node homoclinic orbit bifurcation occurs, when
saddle-node and saddle-homoclinic bifurcations occur
simultaneously.
The bifurcation occurs in the INa,p - IK model, with
τ(V ) = 0.17 and I = 4.51. The bifurcation is very important
for neural excitability, since it separates neurons which can
have arbitrarily low spiking frequencies (those that start to
spike via saddle node on invariant circle), from those which
cannot exhibit frequency dependence (those that start to spike
via a simple saddle-node bifurcation).
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Figure: Saddle node homoclinic orbit.
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Figure: Saddle-node homoclinic bifurcation diagram.
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The cusp

Saddle-node homoclinic orbit, though involving two
bifurcations at a time is not degenerate, since one of the
bifurcations is local, while the other global
The simplest degenerate bifurcation in 1d is called the cusp
bifurcation. Although it appears in 1d, it has codimension 2.
Assume ∂F

∂x = 0 and ∂2F
∂x2 = 0 but ∂3F

∂x3 6= 0. In such case the
system near the bifurcation can be approximated by the
normal form:

dx
dt = c1(b) + c2(b)x + ax3

where b is the bifurcation parameter, c1(b) = F (xb, b),
c2(b) = ∂F(xb ,b)

∂x , a = ∂3F
∂x3 /6
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The cusp

The bifurcation is of codimension 2, and there are more
degrees of freedom of how the system can actually go through
that bifurcation
Think of c1(b) and c2(b) a parametric curves which determine
the way through the bifurcation
Since the system is at a bifurcation, c1 and c2 satisfy

c1 + c2x + ax3 = 0

which is a surface in 3d, called the cusp surface.
Moreover when c2 = ± 2√

a (c2/3)3/2 the system undergoes the
saddle node bifurcation.
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Figure: The cusp surface.
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The cusp
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Figure: The cusp bifurcation diagram.
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The pitchfork

An important case of traversing the cusp is the situation in
which c1 = 0 and c2 = b.
The topological normal form is

dx
dt = bx + ax3

This bifurcation is called the pitchfork, and can either be
subcritical or supercritical (depending on the sign of a)
To some extent this bifurcation is 1d analog of the
Andronov-Hopf bifurcation, though has infinite codimension,
since equality condition involves all even order derivatives of F
(unless there are some symmetry conditions imposed on the
system).
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Bogdanov-Takens bifurcation

What happens when the the Jacobian matrix has two zero
eigenvalues?
Depending on how the eigenvalues are crossing zero, it can
have two saddle node bifurcations at a time, or saddle node
and Andronov-Hopf bifurcation at a time,
The bifurcation of codimension 2 is called Bogdanov-Takens
bifurcation. As we will see soon, it is very important for neural
excitability.
Much like the cusp (which is a 1d example), there is no one
way of traversing Bogdanov-Takens bifurcation.
Surprisingly, not only saddle-node and Andronov-Hopf
bifurcations occur near Bogdanov-Takens point - there is
always saddle-homoclinic orbit bifurcation near by!
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Bogdanov-Takens bifurcation

The normal form for the bifurcation is:

dx
dt = y

dy
dt = c1 + c2x + x2 + σxy

depending on the sign of σ the bifurcation is either subcritical
or supercritical.
The bifurcation occurs when c1 = c2 = 0. Again c1 and c2
can be interpreted as functions of some parameter which
determine the way through the bifurcation. In particular c1(α)
and c2(α) can form a closed loop around the bifurcation
point, which is useful to study ”nearby” bifurcations
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Figure: Vector field as two surfaces at Bogdanov-Takens bifurcation
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Figure: Bogdanov-Takens bifurcation in INa,p - IK model with EL = −79.42,
I = 5, n∞(V ) = 1/(1 + e((−31.64−V )/7))
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Bautin bifurcation

What happens when the Andronov-Hopf bifurcation switches
from supercritical to subcritical?
That is:

a =
1

16

(
∂3f
∂x3 +

∂3f
∂x∂y2 +

∂3g
∂x2∂y +

∂3g
∂y3

)
+

+
1

16ω

(
∂2f
∂x∂y

(
∂2f
∂x2 +

∂2f
∂y2

)
−
∂2g
∂x∂y

(
∂2g
∂x2 +

∂2g
∂y2

)
+

−
∂2f
∂x2

∂2g
∂x2 +

∂2f
∂y2

∂2g
∂y2

)

changes sign?
At that point the stability of cycles change as well as stability
of equilibria...

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 7 50/53



Codimension 1 in 2d
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Bautin bifurcation

It turns out that near the bifurcation from subcritical AH to
supercritical AH (called Bautin bifurcation), there is always
fold cycle bifurcation near by
The normal form (in terms of complex variable) is:

dz
dt = (c + iω)z + az |z |2 + a2z |z |4

where a and a2 are often called Lyapunov coefficients. Bautin
bifurcation occurs, when a = c = 0 and a2 6= 0, hence is of
codimension 2.
The normal form undergoes fold cycle bifurcation when
a2 − 4ca2 = 0.
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Recapitulation

Attractor sets in 2d are either cycles or equilibria, due to
Poincaré-Bendixon theorem
The theorem relies on Jordan’s curve theorem which fails on
some 2d topologies like torus or Möbius strip
In 3d things are much more complex, orbits can be
quasiperiodic or chaotic
Saddle-node homoclinic orbit, Bodganov-Takens and Bautin’s
are codimension 2 bifurcations in 2d which separate certain
dynamical regimes, important from neurocomputational point
of view.
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