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Introduction

Hodgkin-Huxley model is fairly biologically accurate, but is
very slow - gating variables take most of the computing time
Persistent instantaneous sodium + potassium ( INa,p - IK) is
more efficient (there is only one gating variable), but still it
requires two computations of exponential functions per step.
This model is still far too slow for large simulations.
Exponential function requires a lot of computing since:

ex = 1 + x +
x2

2! +
x3

3! +
x4

4! + ...+
x i

i! + ...

up to required accuracy
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Actually direct summation of the series

ex = 1 + x +
x2

2! +
x3

3! +
x4

4! + ...+
x i

i! + ...

would be numerically unstable, since both the numerator and de-
nominator get very big. Instead it is better to express the i-th term
with the previous one:

termi =
x i

i! =
x
i

x i−1

(i − 1)! =
x
i termi−1

The algorithm is then

t=1; s=1;
for(i=1;i<n;i++) {t=t*x/i; s=s+t;}

which in any case requires a lot of processing.
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Simplified INa,p - IK

Recall the INa,p - IK model:

Cm
dV
dt = I − gL(V − EL) − gNam∞(V )(V − ENa) − gKn(V − EK)

dn
dt = (n∞(V ) − n)/τn(V )

with Cm = 1, EL = −80, gL = 8, ENa = 60, gNa = 20,
EK = −90, gK = 10,
m∞(V ) = 1

1+exp(−20−V
15 )

,n∞(V ) = 1
1+exp(−25−V

5 )
, τn(V ) = 1,

I = 0.
Most of the computations performed each step are due to
computation of the exponential functions.
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Simplified INa,p - IK

But we can try to approximate the sigmoid 1
1+exp(x) with

some simpler smooth function with similar properties.
For example function:

f (x) =
{

1
2(0.175·x−1)5 + 1; x < 0

1
2(0.175·x+1)5 ; x > 0

does a pretty good job and requires one branching instruction,
5 multiplications (why?), one division and one or two
additions/subtractions.
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Figure: Two plots, function f from previous slide (red) and 1
1+exp(x) sigmoid

(black). The approximation is crude, but the function is far easier to compute,
is smooth and differentiable.
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Figure: Phase portrait of the simplified INa,p - IK model with
m∞(V ) = f ((−20 − V )/15) and n∞(V ) = f ((−25 − V )/2) and additional term
= −9 added to the first equation. Compared with the original model.
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Figure: Comparison of the simplified (dashed line) and the original INa,p - IK

model in a cable equation simulation. The spike propagation velocity and their
shape are only slightly different.
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The rule is therefore to avoid any exp, sin, log, tan etc.
functions, since their evaluation requires costly series
expansion
Even though we are still left with lots of possibilities, which
are not as limited as one might expect
We will begin with the simplest possible models, gradually
increasing their complexity
By the end of the section we will study a model that is quite
efficient, though very accurately reproduces known spiking
regimes
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Integrate and fire

The basic idea underlying integrators is that they store
incoming current, and spike whenever the accumulated
membrane potential exceeds some threshold
This idea can be implemented with the so called integrate and
fire neuron:

dV
dt = I − gleak(V − Eleak)

Whenever V reaches certain value Vth an artificial spike is
being generated (it is up to the programmer on how fancy the
spike will be). After the spike V is set to VK (a reset value)
and the simulation continues.
Even though the model is very simple, it can mimic the more
complex integrators (like the INa,p - IK) quite well.
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Figure: Comparison of the monostable INa,p - IK integrator with appropriately
tuned leaky integrate and fire neuron in response to excitatory and inhibitory
input.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 11/53



Introduction
Neurons

Synapses
Recap

Integrate and fire
Neuromime
Resonate and fire
Fitzhugh-Nagumo
E. Izhikevich simple model

0 50 100 150 200 250 300
120

100

80

60

40

20

0

20
V

Time (ms)

 

 
INa IK integrator

Leaky integrate and fire
Input current

Figure: Comparison of the monostable INa,p - IK integrator with appropriately
tuned leaky integrate and fire neuron in response to excitatory and inhibitory
input.
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Figure: Comparison of the monostable INa,p - IK integrator with appropriately
tuned leaky integrate and fire neuron in response to excitatory input (closeup).
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Figure: The leaky integrate and fire neuron in response to excitatory ramp
current. The spiking frequency may get arbitrarily high.
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Neuromime

The spiking frequency of the leaky integrate and fire neuron
can get arbitrarily high, which is not accurate from biological
point of view.
This weakness was addressed by French & Stein in 1970, by
introducing the neuromime
In this case the firing threshold is variable and depends on
previous activity (which is far more plausible from the
biological point of view).
An input for neuromime is supplied to the first leaky
integrator. Its output is then compared with the dynamical
threshold Θ. If it exceeds Θ a spike is generated.
The output spike is supplied back to another leaky integrator
which is responsible for providing Θ. Therefore Θ gets
increased, which causes further spikes less probable.
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Figure: A sketch scheme of the neuromime model
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Figure: A response of neuromime to the ramp current.
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Figure: A response of neuromime to increasing step currents. Note the spike
frequency accommodation.
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Figure: A response of neuromime to increasing step currents. Note the spike
frequency accommodation.
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Figure: A response of neuromime to increasing step currents. Note the spike
frequency accommodation.
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Neuromime

Neuromime is the basic unit for Pulse Coupled Neural
Networks (PCNN), an approach to build neural like circuits
for image segmentation and processing.
Unlike integrate and fire neurons, neuromime accommodates
its firing rate to the magnitude of input, but in contrast to
biological neurons it lacks important dynamical features like
subthreshold oscillations or excitation block.
Lets now focus on a simple model that simulates a resonator.
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Resonate and fire

The resonate and fire neuron is given by a set of two
equations:

C dV
dt = I − gleak(V − Eleak) − W

dW
dt = (V − V1/2)/k − W

where V1/2 and k are parameters
The model simulates the phase space near a focus node, but
can also be equipped with artificial spike generation
mechanism, whenever say V crosses certain Vth.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 19/53



Introduction
Neurons

Synapses
Recap

Integrate and fire
Neuromime
Resonate and fire
Fitzhugh-Nagumo
E. Izhikevich simple model

0 20 40 60 80 100 120 140 160 180 200
120

110

100

90

80

70

60

50

40

30

20

V

Time (ms)

 

 
INa IK resonator

Resonate and fire
Input current

Figure: Comparison of the monostable INa,p - IK resonator with appropriately
tuned leaky resonate and fire neuron in response to excitatory and inhibitory
input.
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Figure: Comparison of the monostable INa,p - IK resonator with appropriately
tuned leaky resonate and fire neuron in response to excitatory and inhibitory
input.
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Figure: Comparison of the monostable INa,p - IK resonator with appropriately
tuned leaky resonate and fire neuron. Good tuning of threshold allows to fire
inhibitory induced (artificially generated) spikes.
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Figure: Comparison of the monostable INa,p - IK resonator with appropriately
tuned leaky resonate and fire neuron. Good tuning of threshold allows to fire
inhibitory induced (artificially generated) spikes.
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Leaky integrate and fire and resonate and fire models are not
very useful for simulating real neurons. Neuromime can be
good for engineering applications, but lacks many biological
features.
The approach taken by Richard FitzHugh in 1961 was to get
rid of all the ionic conductances, and mimic the phase plane
with simple polynomial and a linear function (Jin-Ichi Nagumo
later created an electrtical device that implemented the model
using tunnel diodes). The model is defined:

dV
dt = V − V 3 − W − I

dW
dt = 0.08(V + 0.7 + 0.8W )

(in general the V nullcline is a third degree polynomial, while
W nullcline is linear).
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Figure: An annotated phase portrait of the FitzHugh-Nagumo model.
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Figure: Phase portraits of the FitzHugh-Nagumo model (as given in previous
slide) for I = 0 and I = 0.5 the stable focus looses stability at some point in
between.
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FitzHugh-Nagumo model

The more general form for the model is

dV
dt = V (a − V )(V − 1) − W − I

dW
dt = bV − cW

by varying dimensionless parameters a, b and c one can
obtain a system which has 1,2 or 3 intersections of nullclines
exhibiting most of the known dynamical neuronal properties.
The system much like the INa,p - IK model undergoes all of
the bifurcations discussed on previous lectures, but evaluation
of the right hand side function requires only at most three
multiplications (one extra multiplication is required for the
time step) .
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FitzHugh-Nagumo model

The model is also a good choice for cable equation and
general reaction-diffusion systems

dV
dt = α

∂2V
∂x2 + V (a − V )(V − 1) − W − I

dW
dt = bV − cW

The code implementing the FitzHugh-Nagumo cable equation
model can fit on a single slide!
Check out http://www.scholarpedia.org/wiki/images/
ftp/FitzHugh_movie.mov
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function cableFN()
ff=figure;
N=1024; % Number of spatial compartments (spatial resolution)
V=ones(1,N)*(-1); W=ones(1,N)*(-0.5); I=zeros(1,N); i=1;
tau = 0.1; tspan = 0:tau:1000;
% Second order derivative operator (sparse matrix)
S=sparse([1:N 1:N 2:N 1],[1:N 2:N 1 1:N ],[-2*ones(1,N) ones(1,2*N) ]);
for t=tspan

if (t>0) I(1,N/4+N/2)=30; end; % to ignite any interesting action
V = V + tau*((S*V’)’-V.ˆ3./3+V-W+I);
W = W + tau*0.08*(V+0.7-0.8*W);
if (mod(i,25)==0)

cla; hold on;
plot(1:N,V+1,1:N,W/3-2,1:N,I/40-2.5,’Linewidth’,2);
hold off; axis([1 N -3 4]); legend(’V’,’n’,’I’); drawnow;

end;
i=i+1;

end;
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Figure: A screen of the cable equation simulation done by the code on
previous slide.
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Simple Model of Eugene M. Izhikevich

Recall that the quadratic integrate and fire model with reset is
a canonical model for the saddle-node homoclinic orbit
bifurcation and depending on the reset value can exhibit
various phenomena.
E. Izhikevich noticed, that the important decision whether to
spike or not is performed near the left knee of the ”cubic”
nullcline, whereas the exact shape of the action potential is
not very important in large scale neural simulations
As a result he combined a two parameter model of the left
knee of ”cubic” nullcline (approximated with the quadratic
parabola) with the reset (which is performed on both
variables).
The resulting model, depending on parameters, can mimic
dynamic behavior near many bifurcations.
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Figure: Saddle-node homoclinic orbit bifurcation diagram and corresponding
canonical models with reset value.
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Figure: Saddle-node homoclinic orbit bifurcation diagram and corresponding
canonical models with reset value.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 30/53



Introduction
Neurons

Synapses
Recap

Integrate and fire
Neuromime
Resonate and fire
Fitzhugh-Nagumo
E. Izhikevich simple model

Simple Model of Eugene M. Izhikevich

The model defined as follows:

C dV
dt =k(V − Vr )(V − Vt) − U + I

dU
dt =a (b(V − Vr ) − U)

moreover if V > Vpeak V := c and U := U + d .
a, b, c, d ,Vpeak , k,C ,Vr ,Vt , I are parameters (there are ten
parameters, but in fact there are only four independent
parameters)
Much like 1d quadratic integrate and fire with reset can mimic
2d system near saddle-node homoclinic orbit bifurcation, the
2d Simple Model with reset can mimic a 3d system near
various bifurcations!
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Figure: An annotated phase portrait of the Izhikevich Simple Model.
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The Simple Neuron model can be written in the form

dV
dt =αV 2 + βV + γ− U

dU
dt =a(bV − U)

for some parameters. Recall the normal form of Bogdanov-Takens
bifurcation:

dx
dt = y

dy
dt = c1 + c2x + x2 + σxy

The simple model can exhibit Bogdanov-Takens bifurcation (inte-
grator - resonator transition).
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(L) integrator

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(K) resonator

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(G) Class 1 excitable

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(H) Class 2 excitable

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(P) bistability

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(S) inh. induced sp.

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(J) subthreshold osc.

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(O) thresh. variability

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(A) tonic spiking

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(B) phasic spiking

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(R) accomodation

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(M) rebound spike

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(I) spike latency

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(T) inh. induced brst.

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(E) mixed mode

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

http://www.izhikevich.org/publications/whichmod.htm


Introduction
Neurons

Synapses
Recap

Integrate and fire
Neuromime
Resonate and fire
Fitzhugh-Nagumo
E. Izhikevich simple model

 

 
(D) phasic bursting

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(C) tonic bursting

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(N) rebound burst

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(F) spike freq. adapt

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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(Q) DAP

Figure: Dynamic regimes exhibited by the simple model by Eugene M.
Izhikevich, see http://www.izhikevich.org/publications/whichmod.htm
figure1.m for parameters.
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http://www.izhikevich.org/publications/spikes.htm with permissions.
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% Created by Eugene M. Izhikevich, February 25, 2003
% Excitatory neurons Inhibitory neurons
Ne=800; Ni=200;
re=rand(Ne,1); ri=rand(Ni,1);
a=[0.02*ones(Ne,1); 0.02+0.08*ri];
b=[0.2*ones(Ne,1); 0.25-0.05*ri];
c=[-65+15*re.ˆ2; -65*ones(Ni,1)];
d=[8-6*re.ˆ2; 2*ones(Ni,1)];
S=[0.5*rand(Ne+Ni,Ne), -rand(Ne+Ni,Ni)];
v=-65*ones(Ne+Ni,1); firings=[]; % Initial values of v and spike timings
u=b.*v; % Initial values of u
for t=1:1000 % simulation of 1000 ms

I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input
fired=find(v>=30); % indices of spikes
firings=[firings; t+0*fired,fired];
v(fired)=c(fired);
u(fired)=u(fired)+d(fired);
I=I+sum(S(:,fired),2);
v=v+0.5*(0.04*v.ˆ2+5*v+140-u+I); % step 0.5 ms
v=v+0.5*(0.04*v.ˆ2+5*v+140-u+I); % for numerical
u=u+a.*(b.*v-u); % stability

end;
plot(firings(:,1),firings(:,2),’.’);
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Figure: A spike train computed by the script from previous slide. See
http://www.izhikevich.org/publications/spikes.htm
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Synapses

Every nerve impulse eventually reaches the axon, and has to
be somehow transmitted to another neuron.
This is accomplished by the synapses, small spaces where two
neuronal membranes come close together.
However small, synapses are far from being simple. There are
two main types of synapses:electrical (sometimes called gap
junctions) and chemical.
Chemical synapses work by releasing a chemical messenger
substance (neurotransmitter) which binds to the receptors at
the postsynaptic neuron.
Electrical synapses seem to exchange the membrane excitation
directly, via sodium/potassium gradients.
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Figure: A chemical synapse. Modified from http:
//en.wikipedia.org/wiki/File:Synapse_Illustration2_tweaked.svg
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Types of synapses

Chemical synapses can be distinguished by the
neurotransmitters and receptors they use for signaling. The
most common neurotransmitters are:

Glutamate (salts of glutamic acid) - bind to
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPA) and N-methyl-D-aspartic receptor (NMDA). Both
excite the postsynaptic neuron.
γ-Aminobutyric acid (GABA) - binds to GABA receptors which
can be divided into two main types GABAA and GABAB. Both
Inhibit the postsynaptic neuron.

Each binding of neurotransmitter to a receptor opens an ionic
channel increases membrane conductance.
The postsynaptic excitation/inhibition depends on the synapse
strength (size), available amount of neurotransmitter, and the
postsynaptic membrane polarization.
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Short term plasticity

The short term plasticity models the available amount of
neurotransmitter at a time.
Some synapses exhibit facilitation (the amount of
neurotransmitter becomes larger as the presynaptic neuron
spikes) while other exhibit depression (the amount of
neurotransmitter decreases in response to spikes, making the
synapse weaker)
The simplest formulation is:

dS
dt = (1 − S)/τs

and S := pS whenever an action potential is transferred. The
synapse gets depressed for p < 0 and facilitated for p > 0.
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Figure: Simple synapse exhibiting depression (1) and facilitation (2).
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Figure: Simple synapse exhibiting depression (1) and facilitation (2).
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Depression-Facilitation

The recordings from real synapses look however rather
different than those modeled by the simple synapse above
(though the simple model is fairly accurate for very large
simulations)
Henry Markram and his collaborators introduced in 1998 a
more accurate phenomenological model:

dR
dt =

1 − R
D

dw
dt =

U − w
F

where U, D, F are parameters. Whenever a spike is
propagated through the synapse R := R − Rw and
w := w + U(1 − w). R is the depression variable and w is the
facilitation variable. The total synaptic strength at time t is
equal S = Rw
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Figure: A synapse modeled by the phenomenological model of H. Markram
exhibiting depression (1) F = 50,D = 100,U = 0.5 and facilitation (2)
D = 100,F = 50,U = 0.2. By adjusting the parameters the model can
reproduce conductances of various synapses.
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Figure: A synapse modeled by the phenomenological model of H. Markram
exhibiting depression (1) F = 50,D = 100,U = 0.5 and facilitation (2)
D = 100,F = 50,U = 0.2. By adjusting the parameters the model can
reproduce conductances of various synapses.
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The value of the short term depression-facilitation influences
the resulting receptor conductance. In the present scope we
assume there are four conductances gAMPA, gNMDA, gGABAA

and gGABAB . Each time a spike is propagated the appropriate
conductances are increased by ci→jSi = ci→jRiwi (before
depressing or facilitating) where ci→j is the strength of the
synapse from neuron i to neuron j .
The conductances have their own kinetics, that is they
diminish exponentially as

dg
dt = −g/τ

where τAMPA = 5ms, τNMDA = 150ms, τGABAA = 6ms and
τGABAB = 150ms
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Once we have the synaptic conductances we have to look
what currents they may cause through the membrane,
depending on voltage V . We generally have that:

Isyn = gAMPA(EAMPA − V )+

+ gNMDA

(V+80
60
)2

1 +
(V+80

60
)2 (ENMDA − V )+

+ gGABAA(EGABAA − V )+

+ gGABAB (EGABAB − V )

with EAMPA = 0, ENMDA = 0, EGABAA = −70, EGABAB = −90.
NMDA current looks strange but the formula is a fit to
empirical data.
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Eventually, using say the Izhikevich Simple Neuron (with reset) we
have (for single compartment model):

dVi
dt =0.04V 2

i + 5Vi + 140 − Ui +
∑
j→i

gj,AMPA(0 − Vi)+

+
∑
j→i

gj,NMDA

(
Vi+80

60

)2

1 +
(

Vi+80
60

)2 (0 − Vi) +
∑
j→i

gj, GABAA(−70 − Vi)+

+
∑
j→i

gj,GABAB (−90 − Vi) +
∑

j∈gap(i)
ggapj→i(Vj − Vi)

dUi
dt =a(bVi − Ui)
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Now, since we have the equation, the only thing left would be
to discretize and solve it numerically.
There is however one catch. Assume the neuron is at rest
with V = −65, and gGABAA is large due to previous activity.
Then gGABAA(−70 + 65) = −5gGABAA is a strong inhibitory
input. Assume that input manages to hyperpolarize the
membrane so that at the next time step V = −76. Now
gGABAA(−70 + 76) = 6gGABAA is a strong excitatory input!
The same applies to gGABAA which is even more vulnerable
due to slower kinetics.
In certain conditions that ping-pong can continue, and V will
oscillate each time getting bigger in absolute value. This leads
to numerical instability (V reaches spiking cutoff every time
step causing indefinite increase of U and the whole simulation
collapses).
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In order to avoid instability, one has to modify the numerical
scheme (it is not sufficient to use smaller time step).
Recall the Euler method is obtained as follows:

dx
dt = lim

∆t→0

x(t + ∆t) − x(t)
∆t = F (x(t)) ⇒ x(t+1) ≈ x(t)+∆tF (x(t))

But on the other hand we have :

dx
dt = lim

∆t→0

x(t) − x(t − ∆t)
∆t = F (x(t)) ⇒ x(t+1) ≈ x(t)+∆tF (x(t+1))

we get the so called closed (or backward) scheme. The closed
scheme is far more stable with respect to instabilities related
to GABA conductances.
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The closed scheme is stable, but the solution is implicit,
therefore it needs to be solved separately for every right hand
side function F .
Fortunately conductances depend linearly in V , so the implicit
scheme is fairly easy to implement for that part of the
equation. The rest (including neural dynamics) can be solved
by the forward (explicit) scheme.
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We have

Vi(t + 1) = Vi(t)+

+∆t


0.04Vi(t)2 + 5Vi(t) + 140 − Ui(t) +

∑
j→i

gj,AMPA(0 − Vi(t + 1))+

+
∑
j→i

gj,NMDA

(
Vi(t)+80

60

)2

1 +
(

Vi(t)+80
60

)2 (0 − Vi(t + 1)) +
∑
j→i

gj, GABAA(−70 − Vi(t + 1))+

+
∑
j→i

gj,GABAB (−90 − Vi(t + 1)) +
∑

j∈gap(i)
ggapj→i(Vj − Vi(t))




Ui(t + 1) = Ui(t) + ∆t (a(bVi(t) − Ui(t)))

note that the coefficient of the NMDA conductance depends on
V (t) and is therefore computed explicitly.
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Consequently by solving with respect to Vi(t + 1)

Vi(t + 1) =

=
Vi(t) + ∆t

(
0.04Vi(t)2 + 5Vi(t) + 140 − Ui(t)+

1 + ∆t
(∑

j→i gj,AMPA +
∑

j→i gj,NMDA

(
Vi (t)+80

60

)2

1+
(

Vi (t)+80
60

)2+

−70
∑

j→i gj, GABAA − 90
∑

j→i gj,GABAB +
∑

j∈gap(i) ggapj→i(Vj − Vi(t))
)

∑
j→i gj, GABAA +

∑
j→i gj, GABAB

)

Ui(t + 1) = Ui(t) + ∆t (a(bVi(t) − Ui(t)))

The scheme is stable and ready to use for large scale simulations, see
foe example:
http://www.izhikevich.org/publications/reentry.htm
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Computing exponential functions, sines etc. is very
demanding!
Integrate and fire and resonate and fire are simple models,
useful for theoretical approach, but not good for simulations
FitHugh-Nagumo model is simple (nullclines are polynomial),
yet biologically plausible and particularly useful for
reaction-diffusion systems
Simple Model by E. Izhikevich is an efficient 2d model with a
power of 3d model due to the reset
Synapses can be electrical and chemical. Chemical synapses
exhibit short term depression/facilitation
Synaptic currents depend on neurotransmitter conductances
and postsynaptic membrane voltage
Explicit Euler scheme can be unstable for synaptic
conductances(!)
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