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Summary

• Where does deep learning succeed and where does 
it fail 
The quest for Artificial Intelligence and elephants in the room 

• Predictive vision model - alternative approach 
The predictive vision model as a way to bring machine learning to the 
dynamical, physical reality. Perception as prediction. 

• Why it works 
Machine learning meets the issues of scalability, parallelism, real time 
execution, independence of particular implementation 

• Next steps  
A path towards a truly “physical” machine learning implemented on a 
cortical processor



Artificial Vision Systems: many classes
• Custom Computer Vision algorithms 

Limited to narrow applications and not scalable
• Biologically detailed simulations of visual system 

Parameter hell, most of the time simply don’t work
• Machine Learning algorithms 

Vaguely related to biology but typically work. High hopes, particularly with: 
• Deep Learning (i.e., convolutional neural networks) recently made practical by GPUs 

Excellent performance on classifying photos taken by humans.  Facebook and Google recently 
hired pioneers LeCun and Hinton (See LeCun, Bengio, & Hinton (2015) for a review in Nature).  
Somewhat narrow class of algorithms resembling neocognitron. Not suited for robotics and 
other online real world applications.

"Alexnet"	by	Krizhevsky,	Sutskever	&	Hinton	(2012)

Shuffled
images ->

Image
class

<- labels



Success of deep learning

• Deep learning has vastly improved object 
recognition in visual domain (e.g. ImageNet)

• Deep learning has improved speech recognition 
and machine translation



But…
• Deep learning has not yet enabled robotics
• In fact aside from clear benefits that the big data 

companies gained (such as Google or Facebook), 
deep learning is yet to find a big market 
application: 
 
 
 
 

• Although impressive in some tasks, many real 
world applications remain out of reach



But
• Deep learning is currently primarily focused on 

supervised or reinforcement learning
• Both paradigms need a lot of labeled data. 

Reinforcement learning needs so much data that 
it is only effective in games/simulations.

——
                 Labeled Data

No more  
labeled data



Artificial Vision Systems
• Deep Learning (i.e., convolutional neural networks)

– Can be easily "fooled" (Nguyen, Yosinski, & Clune 2014)
– Can have very rough category boundaries (Szegedy et al. 2013)

• Theoretically "more data" could solve these problems... but not practically

99.12% confidence Subtle differences,
large errors



Artificial Vision Systems
• Deep Learning image recognition relies on textures 

not outlines



Category: "Airplane"
• Labelling these images in a robust, 

generalizable way requires:
– Contextual knowledge
– Functional knowledge
– Cultural knowledge

• In other words “common sense 
knowledge” !

• Rote memorization is an option (especially 
for a system with many parameters) but is 
under defined and doesn't generalize.

Source: ImageNet
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Perception should represent reality

Physical 
Reality

Physical Causes

Sensory 
Projection

Human selected and 
labeled data

Machine 
Learning 
System

Representation of the data 
(textures, patterns, colors, 

orientations)

Label

Windmill

State of the art in ML

Great algorithms, but 
fundamentally limited



Perception should represent reality

Physical 
Reality

Physical Causes

Sensory 
Projection

Continuous, online 
unlabelled data

e.g. Predictive 
Vision Model

Representation of the 
physical causes

Action

Look at the 
shadow

Where ML should go

Correct representation  
-> Correct generalisation 



Perception depends on (physical) 
context



Perception depends on (physical) 
context



Perception should represent reality

Physical 
Reality

Physical reality 
(dynamics)

Sensory 
Projection

Apparent view of 
the unfolding dynamics

Model Prediction

How to build an AI for physical reality? 

Prediction of immediate 
future evolution of the 

perceived system

If I can make good predictions, I have a good model
of the phenomenon I observe. Otherwise my model needs to 

be modified. Prediction error is the supervising signal!



PVM - principles

• Prediction error as the supervising signal 
• Learning features at multiple levels of abstraction 
• Recurrence since reality is complex 
• Lateral interactions since in reality nearby 

phenomena affect each other 
• Multi scale/scale free design, since in reality many 

scales are simultaneously intertwined 
• Feedback across scales, since in reality 

phenomena at different scales affect each other 
• Uniform parallel design for great scalability



Constructing PVM

Associative memory module, 
binding signal now with  
signal in the near future. 

Maybe a “shallow perceptron”, 
“deep perceptron” or in fact 
anything else that is able to 
associate with a bottleneck 
(e.g. Boltzmann machine, 

spiking network)
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Architecture
• Uniform structure
• Local learning
• Compression
• Not relying on any particular 

low level implementation
• Doesn’t even have to be 

synchronous!
• Stable !

Are the features that make 
this architecture scalable



Mixing predictive and supervised
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(predictive)
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Predictive Vision Model Architecture

PVM 
(Unsupervised)

Tracker Readout  
(Supervised) 

PVM Tracker

Average Bounding Box 
(Thresholding)

PVM Tracker Output

Supervisory Signal

PVM Unit

Tracker Readout Heatmap



PVM Tracking task
						Input	frame	
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				Average		
			heatmap

Frame	with	average	heatmap	
superimposed

Location	of	the	target	based	in		
the	peak	of	average	heat	map
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PVM Tracking task
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Quantifying Visual Object Tracking
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Ground truth
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Experiment 1: Datasets



Experiment 1: Datasets

Pretty big compared to other visual tracking datasets.
Available at pvm.braincorporation.net

http://pvm.braincorporation.net


Experiment 1

• Simultaneous unsupervised and supervised 
training of PVM and tracker readout.

PVM 
(Unsupervised)

Tracker Readout  
(Supervised) 

PVM Tracker

Average Bounding Box 
(Thresholding)

PVM Tracker Output

Supervisory Signal

PVM Unit

Tracker Readout Heatmap

Experiment duration

Predictive training (unsupervised)

Readout training (supervised)



Experiment 1 Effect of Supervised + 
Unsupervised Training Time

• Performance on three 
datasets and three 
measures as a function of 
total training time

• In all 9 cases sufficient 
training allows to suppress 
state of the art
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Experiment 1: Highlights Results Video



Challenging Visual Conditions
• A notable advantage of the PVM-based Tracker is that it can track objects 

robustly across real-world lighting changes, backlighting, lens flares, and 
shadows — normally a challenge for robots operating in the real world.



Experiment 2
• Unsupervised-only Training of PVM, then Shorter 

Supervised "Priming" Segment of PVM Tracker

PVM 
(Unsupervised)

Tracker Readout  
(Supervised) 

PVM Tracker

Average Bounding Box 
(Thresholding)

PVM Tracker Output

Supervisory Signal

PVM Unit

Tracker Readout Heatmap

Experiment duration

Predictive training (unsupervised)

Readout 
training 
(supervised)



Experiment 2 Effect of Supervised Training 
Time

• Performance on three 
datasets and three 
measures as a function 
of short supervised 
training (after much 
longer unsupervised)  

• In most cases the 
performance surpass 
state of the art
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Experiment 3

Training Time
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Virtual World

The robot is placed in 
random positions in the 
virtual room and has to 
approach the ball within 
given amount of time.



Experiment 3 in the real world
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• PVM architecture is constructed as a hierarchy with feedback. 
• Re-conceptualizing the network recursively, PVM units are 

organized as self-similar, nested simple recurrent networks. 
– PVM units use each other as deep SRN "context layers"

Pt+1

Ct-1

Pt

Pt+1

Pt Ct-1

(A) Simple Recurrent Network (B) Predictive Vision Model Unit*

Analysis of PVM's recurrent structure
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Generative PVM

Feed prediction 
as new input

Explore the  
“predictive 
trajectory”



Recurrent dreams

“Dream” Actual Difference

“Dream” Actual Difference



Contextual fill-in

Reconstruction with feedback  
and lateral connections disabled.

Reconstruction behind an  
occluder.
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Physical 
Reality

Task

Category/ 
Detection…

Hard coded solution

Works very well in very narrow 
applications. Can be tested and proved

No generalisation

Feature engineering + 
simple classifiers

If lucky: some generalisation

Deep learning

Works well in a slightly broader  
set of applications

Works well in some visual and auditory 

domains.

Fine generalisation in restricted domains

Predictive learning of 
physics

Autonomy

Generalises correctly based on correct 

representations of physical causes and 

relations

Needs more research and development

No inferred parameters

Few inferred parameters

Millions of inferred parameters

> billions of inferred parameters

Task readout

Autonomy requires substantial 
generalisation which is the ability to act 

correctly in new conditions.

State of the art
Proposed long 

 term
 plan

Path to autonomy



Next steps

Rough plan: 

0. Reimplement PVM for GPU 
1. Explore applications, e.g. autonomous cars or multimodal 

perception 
2. Scale up number of parameters, training time, modalities 
3. Explore meta-parameters 
4. Experiment with various neuromorphic implementations 
5. Apply in closed loop setting (control problem) 
6. Add action selection/reinforcement learning 
7. Scale up 
8. Scale up…



"It is comparatively easy to make computers exhibit 
adult level performance on intelligence tests or 
playing checkers...  

...and difficult or impossible to give them the skills of 
a one-year-old when it comes to perception  
and mobility." 
—Hans Moravec (1988)

Moravec's Paradox



Moravec's Paradox AD 2016

How can we not see this elephant?

2015 DARPA Robotics Challenge Various recent AI achievements

Moravec’s paradox is not a problem for roboticists. 
It is the central problem for AI that has long been neglected. 

Source: youtube
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Papers and results
More details and source code available in two papers recently 
released: 

“Unsupervised Learning from Continuous Video in a Scalable 
Predictive Recurrent Network” 
https://arxiv.org/abs/1607.06854 

“Fundamental principles of cortical computation: unsupervised 
learning with prediction, compression and feedback” 
https://arxiv.org/abs/1608.06277 

Code (CPU) 
http://github.com/braincorp/PVM 

And a blog: 
http://blog.piekniewski.info

https://arxiv.org/abs/1607.06854
http://arxiv.org/abs/1608.06277
http://blog.piekniewski.info


Thank you!


