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Artificial Vision Systems: many classes

» Custom Computer Vision algorithms
Limited to narrow applications and not scalable

» Biologically detailed simulations of visual system
Parameter hell, most of the time simply don't work

« Machine Learning algorithms
Vaguely related to biology but typically work. High hopes, particularly with:

» Deep Learning (i.e., convolutional neural networks) recently made practical by GPUs
Excellent performance on classitying photos taken by humans. Facebook and Google recently
hired pioneers LeCun and Hinton (See LeCun, Bengio, & Hinton (2015) for a review in Nature).

Somewhat narrow class of algorithms resembling neocognitron. Not suited for robotics and
other online real world applications.
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» Deep learning has vastly improved object
recognition in visual domain (e.g. ImageNet)

» Deep learning has improved speech recognition
and machine translation

BIG DATA & DEEP LEARNING
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* Deep learning has not yet enabled robotics

 |In fact aside from clear benefits that the big data
companies gained (such as Google or Facebook),
deep learning is yet to find a big market

application: |
p p n Francois Chollet m

As far as | can tell, Prisma is the biggest
consumer success of deep learning so far. One
of many “killer apps" to come.
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* Although impressive in some tasks, many real
world applications remain out of reach



» Deep learning is currently primarily focused on
supervised or reinforcement learning

» Both paradigms need a lot of labeled data.
Reinforcement learning needs so much data that
it is only effective in games/simulations.

BIG DATA & DEEP LEARNING/-
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Artificial Vision Systems

* Deep Learning (i.e., convolutional neural networks)

— Can be easily "fooled" (Nguyen, Yosinski, & Clune 2014)

— Can have very rough category boundaries (Szegedy et al. 2013)
« Theoretically "more data" could solve these problems... but not practically

ema tod school bus

99.1 2% confidence

Subtle differences,
large errors



* Deep Learning image recognition relies on textures
not outlines

ESSCrEEyn L) GO KECTEWRI 03 "‘-tn,-,.".:u Ol
OOZE RN 2 gull '92 JOOKRIIUE’

solo il 1902 ngos 0072 VIS4 Sdn "OUE
[FIUZZIENI ) 24 CON-G

.‘?ul-yf 092 N - ‘.'o'_:;i‘,'.v.'! A
LS O - BP0 02 ] 578 NOI2 p
Y a ) ¢ . \ e y \J
» . 3 g . 1

) f - . N\, - q

LA KA(

7 ;:?}/pli',n_'.u'. 099
IS0 D

’0'.‘1"' Jruiys 999 5t 10,072
»

";nvsjﬁu 0. . Jodingdt "0
nJ'.t‘ — shar ‘J'.' ol - w s ‘J DU

T — { / -
AT A
- .
> 4 r

[

A Tzt Y ﬁ;
HOWETSCH ORI

\.0'
-




* Labelling these images in a robust,
generalizable way requires:

— Contextual knowledge

— Functional knowledge
— Cultural knowledge

* |In other words “common sense
knowledge” !

* Rote memorization is an option (especially
for a system with many parameters) but is
under defined and doesn't generalize.
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Perception should represent reality

State of the art in ML

Physical Sensory Vachine
Reality Projection earning
System

resentation of the flata

Physical Causes ebeed daa (teXtureci'iepniztei;?]Ss’)co o

Great algorithms, but
fundamentally limited

Label

 Windmill



Perception should represent reality

Where ML should go

Physical Sensory e.g. Predictive Action
Reality Projection Vision Model
\
: \
” Look at the
shadow
Physical Causes ngltggecﬁfé c(;r;ltige Representation of the

physical causes

Correct representation
-> Correct generalisation



Perception depends on (physical)
context

Edward H. Adelson



Perception depends on (physical)
context




How to build an Al for physical reality?

Physical Sensory o
Reality Projection Model Prediction

e
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Prediction of immediate
future evolution of the
perceived system

Apparent view of
the unfolding dynamics

Physical reality
(dynamics)

If | can make good predictions, | have a good model
of the phenomenon | observe. Otherwise my model needs to
be modified. Prediction error is the supervising signal!



Prediction error as the supervising signal
_earning features at multiple levels of abstraction
Recurrence since reality Is complex

Lateral interactions since in reality nearby

Multi scale/scale free ©

scales are simultaneou

phenomena affect each other

esign, since In reality many
sly intertwined

Feedback across scales, since in reality
phenomena at ditferent scales affect each other

Uniform parallel design for great scalability




Primary Signal

Associative memory module,
binding signal now with
signal in the near future.

Maybe a “shallow perceptron”,

"deep
anythi
assSocC

(e.q.

perceptron” or in fact

Ng else that is able to

late with a bottleneck

Boltzimann machine,

spiking network)



Constructing PVM
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Constructing PVM

Primary Signal Primary Signal Primary Signal
(predicted) (predicted) (predicted)
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 Uniform structure

- Local learning

« Compression

- Not relying on any particular
low level implementation

- Doesn’t even have to be
synchronous!

- Stable !

Are the features that make
this architecture scalable



Mixing predictive and supervised

Output used as the
primary signal in a
higher area

Predictive
feedback
context

PVM Unit

Primary Signal
(predictive)

Output used as
lateral context

Output used as
predictive context in
a lower area

Primary signal
inputs from several
units below

Readout Signal
(supervised)

Predictive compressed

Lateral
context

Precomputed functions
(features) of the primary signal
(others are possible)



Predictive Vision Model Architecture

PVM Tracker
PVM Tracker Readout Average Bounding Box
(Unsupervised) (Supervised) (Thresholding)
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P\ M Trackmq task

Input frame L1 state L2 state L3 state L4 state L5 state L6 state

Location of the target based in
the peak of average heat map

Input fre
reconstruction predicted predicted | ' ' predlcted
by L2 by L3

Average

(difference) heatmap

L1 object L2 object L3 object L4 object L5 object L6 object
heatmap heatmap heatmap heatmap heatmap heatmap




VM lracking task
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Success (Overlap) Precision Accuracy Tracker

T Ground truth
T T I
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Name # sequences | Length (frames) | Approx. duration at 25fps
Green ball training | 5 12,764 8.5 min

Green ball testing | 29 34,791 23 min

Stop sign training | 20 15,342 10 min

Stop sign testing 30 22,240 15 min

Face training 10 20,444 19.6 min

Face testing 25 34,199 23 min

Total training 35 57,550 38 min

Total testing 84 91,230 60 min

Pretty big compared to other visual tracking datasets.

Avallable at pvm.braincorporation.net



http://pvm.braincorporation.net

Simultaneous unsupervised and supervised
training of PVM and tracker readout.

Experiment duration

Predictive training (unsupervised)

Readout training (supervised)

PVM Tracker

PVM Tracker Readout Average Bounding Box
(Unsupervised) (Supervised) (Thresholding)
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« Performance on three
datasets and three
measures as a function of
total training time

« |In all 9 cases sufficient
training allows to suppress
state of the art

Tracking success

Tracking precision

Tracking accuracy
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6 Success AUC vs Training Time, Green Ball set

6 Success AUC vs Training Time, Stop Sign set
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Predictive Vision Model
Online object tracking

Examples from the test set - the model was not trained
on any of the examples to follow.

Model processed 96x96 video frame. Red - human
generated label, yellow - PVM

Brain Corporation 2016



* A notable advantage of the PVM-based Tracker is that it can track objects
robustly across real-world lighting changes, backlighting, lens flares, and
shadows — normally a challenge for robots operating in the real world.

FVMirakcker
mtracker
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« Performance on three
datasets and three
measures as a function
of short supervised
training (after much
longer unsupervised

* I[n most cases the
erformance surpass
state of the art
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Experiment 3

Virtual World

Approach Performance vs. Training Time
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= The robot is placed in
2 random positions in the
Q o o virtual room and has to
approach the ball within
b w w @  given amount of time.

Training Time
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Can run on local box or AWS cloud

Connects to robot via BrainOS + VPN
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 PVM architecture is constructed as a hierarchy with feedback.

* Re-conceptualizing the network recursively, PVM units are
organized as self-similar, nested simple recurrent networks.

— PVM units use each other as deep SRN "context layers”

(B) Predictive Vision Model Unit

(A) Simple Recurrent Network

P




Generative PVM

Feed prediction
as new input

Explore the
‘predictive

> trajectory”



Difference

Actual

“Dream”

Difference

Actual

“Dream




Contextual fill-in

Reconstruction behind an
occluder.
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Path to autonomy

> billions of inferred parameters

- E Autonomy requires substantial
generalisation which is the ability to act

Predictive learning of correctly in new conditions.

ue|d wial
Buo| pasodo.d

physics
v
Task readout
Autonomy /
A
Millions of inferred parameters
Deep learning

<2

3 = _

o

o,

= Few inferred parameters

D

QO

B Feature engineering +

simple classifiers
Physical . : Task
Reality
‘ No inferred parameters Ca‘tegory/
i Works very well in very narrow Detection. ..

No generalisation

! | _ applications. Can be tested and proved
v ﬁ _> Hard coded solution —>



Rough plan:

0. Reimplement PVM for GPU

1.

O NO OB

Explore applications, e.g. autonomous cars or multimodal
perception

Scale up number of parameters, training time, modalities
Explore meta-parameters

Experiment with various neuromorphic implementations
Apply in closed loop setting (control problem)

Add action selection/reinforcement learning

Scale up

Scale up...



Moravec's Paradox

"It Is comparatively easy to make computers exhibit
adult level performance on intelligence tests or
playing checkers...

...and difficult or impossible to give them the skills of
a one-year-old when it comes to perception ’

and mobility.’ ‘.
o I\

—Hans Moravec (1988)

A\




2015 DARPA Robotlcs Challenge Various recent Al achievements

ima.. — O

-

How can we not see this elephant?

Moravec’s paradox is not a problem for roboticists.
It is the central problem for Al that has long been neglected.



AFRL and DARPA Cortical Processor seedling contract
FA8750-15-C-1078

People involved:

— Todd Hylton - Management support

— Patryk Laurent, Csaba Petre - PVM and robotics experiments
— Micah Richert, Dimitry Fisher - ILCM

— Filip Piekniewski - Pl, PVM, implementation

Dan Hammerstrom who started the program

Countless robots developed and sacrificed for the sake of
science

Hans Moravec for stating his paradox so clearly



More detalls and source code available in two papers recently
released:

“Unsupervised Learning from Continuous Video in a Scalable
Predictive Recurrent Network”
https://arxiv.org/abs/1607.06854

"‘Fundamental principles of cortical computation: unsupervised
learning with prediction, compression and feedback”
https://arxiv.org/abs/1608.0627/7

Code (CPU)
http://github.com/braincorp/PVM

And a blog:
http://blog.piekniewski.info



https://arxiv.org/abs/1607.06854
http://arxiv.org/abs/1608.06277
http://blog.piekniewski.info

Thank you!



