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Abstract—Power law graphs are an actively studied branch
of random graph theory, motivated by a number of recent
empirical discoveries which revealed power law degree distri-
butions in a variety of networks. Power laws often coexist
with some degree of self-organization either based on growth
and preferential attachment (which seems to be the case in
sociological/technological networks) or duplication (which seems
to be the case for biological/methabolic networks). Quite recently
a power law graph with exponent γ ≈ 2 has been observed
in fMRI brain studies of correlations of functional centers of
activity. We study the model we introduced previously to explore
possible mechanisms existing in large neural networks that might
lead to power law connectivity. The model (referred to as the
spike flow model) resembles a kind of spiking neural network
and yields a power law graph with exactly γ = 2 as a byproduct
of its dynamical behavior. In this paper we investigate whether
the power law is robust under certain changes to the model’s
dynamics. In particular we study the effect of merging the model
with a random Erdős-Rényi graph which can be interpreted as
an addition of long range myelinated connections. Our numerical
results indicate that as long as the density of Erdős-Rényi fraction
is bounded by a constant, the power law is preserved in systems
of appropriate size.

I. INTRODUCTION

POWER LAW degree distributions are present in a vari-
ety of information processing networks and systems as

discussed in [1] and [2]. Such power laws often coexist (but
not imply as shown [3]) with certain structural features like
the existence hubs, self-similarity under various operations
(contractions, degree preserving rewirings etc.) and high level
of resistance against random attacks. Since power law graphs
emerge spontaneously in diverse networks ranging from the
World Wide Web [4], science collaboration networks [5], cita-
tion networks [6], ecological networks [7], linguistic networks
[8], cellular metabolic networks [9], [10] to telephone call
network [11], [12], it is quite natural to ask whether neural
systems could benefit from such an architecture, and if so,
whether there are any mechanisms inherent to neural activity
that might lead to a power law connectivity. The answer to
the first part of the above question seems to be yes. Power
law graphs are fairly well connected in comparison to corre-
sponding (in terms of number of edges) random graphs and
offer better communication between remote units (see [13],
[14], [15] for studies of neural networks built on power law
graphs). Quite recent empirical study conducted using fMRI
[16], [17] shows that power law structures are relevant for

modeling brain activity at medium level (excitations of groups
of neurons giving rise to a functional network). These results
are by no means in contradiction to the outcome of studies
of C.elegans worm nervous system that showed exponential
decay of degree distribution [18], [19]. The network of C.
elegans is very small (the whole organism has only about 1000
cells) and the mechanisms we discuss seem to play important
role on the higher level of (possibly large) groups of neurons,
not on the level of single cells and synapses. These results
give further motivation to study the power law connectivity
in the context of neural networks, see [20] and references
therein for a comprehensive survey on scale-free structures
in neocortex on various levels and contexts. In our previous
papers [21], [22], [23] we addressed the second part of the
above question, concerning neural-like mechanism that might
lead to a power law connectivity. Note that the original model
of Barabási and Albert [24] based on growth and preferential
attachment does not describe the situation considered in [16]
since growth in this case is very limited. The other reason is
that Barabási-Albert model in its most natural setup leads to
power law exponent γ = 3 while empirical studies of [16]
strongly suggest γ = 2.

The model introduced in [21], [22], [23] (referred to as
the spike flow model) results in a power law network with
γ = 2 simply as a byproduct of its dynamical behavior.
Furthermore the model inherits many features of typical neural
networks positioning itself somewhere between the classical
Hopfield model [25] (or rather its stochastic variant [26]) and
more complex spiking neural networks. The fairly complex
state space and state memory make the spike flow model
more adequate in modeling large groups of neurons with high
feedback connections rather that single spiking neurons. In
subsequent sections of this article we briefly recall the details
of the investigated model and in further sections study the
robustness of the power law against certain changes to the
model’s dynamics.

II. THE SPIKE FLOW MODEL

The model consists of nodes σi, i = 1 . . . N . Each node’s
state is described by a natural number from some fixed interval
[0, Mi]. In the scope of this paper we assume Mi = ∞, that is
the state space is unbounded (when Mi = 1 on the other hand
the model much resembles Hopfield network). The network is
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Fig. 1. Schematic description of the spike flow model (top left to bottom
right) - the nodes contain some amount of tokens (units of charge), which can
be exchanged under stochastic dynamics. An event of charge exchange can
be seen as a spike (action potential) whence the name - spike flow model.

built on a complete graph in that there is a connection between
each pair of neurons σi, σj , i "= j, carrying a real-valued
weight wij ∈ R satisfying the usual symmetry condition
wij = wji, moreover wii := 0. The values of wij are drawn
independently from the standard Gaussian distribution N (0, 1)
and are assumed to remain fixed in the course of the network
dynamics. The model is equipped with the Hamiltonian of the
form:

H(σ̄) :=
1
2

∑

i !=j

wij |σi − σj | (1)

if 0 ≤ σi ≤ Mi, i = 1, . . . , N, and H(σ̄) = +∞ in the other
case. Here σ̄ denotes of the state of the whole system. The
dynamics of the network is defined as follows: at each step
we randomly choose a pair of neurons (units) (σi, σj), i "= j,
and denote by σ̄∗ the network configuration resulting from
the original configuration σ̄ by decreasing σi by one and
increasing σj by one, that is to say by letting a unit charge
transfer from σi to σj , whenever σi > 0 and σj < Mj . Next,
if H(σ̄∗) ≤ H(σ̄) we accept σ̄∗ as the new configuration of the
network whereas if H(σ̄∗) > H(σ̄) we accept the new config-
uration σ̄∗ with probability exp(−β[H(σ̄∗)−H(σ̄)]), β > 0,
and reject it keeping the original configuration σ̄ otherwise,
with β > 0 standing for an extra parameter of the dynamics,
in the sequel referred to as the inverse temperature conforming
to the usual language of statistical mechanics. In the present
paper we will assume β fixed and large, that is the system is
in low temperature regime and so such ”stochastic” jumps are
rare.

Note that in this setup positive weights wi,j favor agreement
of states σi and σj , while negative weight favor disagreement.

Whenever a unit of charge is exchanged between two nodes
that fact is recorded by increasing the counter associated with
a corresponding edge (Fig 1). The edges (and nodes) being
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Fig. 2. Amount of charge in 7 best units in terms of support plotted against
time (simulation steps) in the early stage of evolution of the original spike
flow model. In this stage the elite drain the charge from the bulk at fairly
equal rate.

frequently visited by units of charge are in the focus of our
interest. We refer to the resulting weighted graph as to the
spike flow graph.

In [22] a number of results related to the spike flow model
have been established:

• In contrast to a seemingly complex dynamics, with high
probability there is a unique ground state of the system, in
which all the charge is gathered in a unit that maximizes

Si := −
∑

j !=i

wij . (2)

referred to as support in the sequel. The proof goes by
a mixture of rigorous and semi rigorous calculations and
has a rather asymptotic character, but is in full agree-
ment with numerical simulations for systems containing
between a couple hundreds to a couple of thousands of
nodes.

• The system’s behavior eventually admits a particularly
simple approximation in terms of a kind of winner-take-
all dynamics: almost all transfers converge to units of
maximal support (referred to as the elite see Figure 2,
while the others referred to as the bulk), which then
compete in draining charge from each other. Ultimately
the unit of maximal support gathers all of the charge and
the system freezes in a ground state (Fig 3).

• The node degree distribution (where by degree we mean
the sum of counters of edges adjacent to a given node1)
obeys a power law with exponent γ = 2. The proof is
based on the elite/bulk approximation and properties of
ordering sequences. Again there is a strong agreement
with numerical results (see Fig. 5)

1Since charge transfers are directed, we distinguish in and out degrees, but
asymptotically these two are equal in terms of distributions.
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Fig. 3. Amount of charge in 7 best units in terms of support plotted against time (simulation steps). Left figure shows the evolution of an undisturbed spike
flow model, the right one includes Erdős-Rényi random fraction with average of 10 edges/node. Clearly in both cases the elite emerges and drains most of the
charge from bulk units, eventually pumping everything to the winner. In the right figure however one can see some discrepancies being the result of presence
of Erdős-Rényi fraction.

In later work also the spectra of resulting spike flow graphs
have been studied giving interesting results [27].

Before moving on to other parts of the paper it is necessary
to give an interpretation of the presented model in terms of
neural networks. Obviously biological neurons do not act like
the units of the spike flow model, they cannot keep their
excitation for later use and whenever they discharge (spike)
they loose their memory about previous excitation (when
the neuron reaches equilibrium state it essentially has zero
”knowledge” of its previous activity). Things are different
however, when a recurrent group of neurons is taken into
account as a single computing unit. In this case it is possible to
keep excitation within the group by loopback connections as
suggested in [28] where (a bit artificial) model based on small
recurrent groups composed of simple dynamical neurons [29]
was investigated. The methodology of functional correlation
graph construction in [28] quite accidentally resembles that
in [16] and both result in γ ≈ 2 power law. We also studied
the properties of spontaneously emerging neuronal groups by
repeating the results of [30] but in this case the outcome was
not apparent (chapter 6 in [23]). The model in [30] contains
long range delayed connections (reentrant connections) which
introduce a lot of noise into the correlations of our interest.
The present paper is aimed at introducing such long range
connections to the spike flow model and investigating whether
the power law of the spike flow model remains stable.

III. NUMERICAL SETUP

The spike flow model is straightforward to implement. In
every step the system’s energy can be recomputed in linear
time (there’s no need to compute all the elements of the
Hamiltonian (equation 1) since most of them don’t change
when only one unit of charge is exchanged. After a while most

of the units (the bulk) are unoccupied and therefore another
slight optimization becomes evident: instead of choosing the
source node randomly among all of the units one can only
choose from those non zero2. Subsequent unoccupied source
node update attempts would be discarded anyway until an
occupied unit has been hit. The choice of the destination unit is
conducted among all units since there are no such restrictions
in this case (we assume Mi = ∞, but if we had Mi = const
we could have used a similar trick). The numerical study
of spike flow model has already been presented in [21] and
[22]. In this article we focus on slight changes to the model’s
dynamics which are as follows:

• We merge the system with a random Erdős-Rényi graph
[31], [32] whose set of vertices coincides with the set of
units.

• If an edge between two units σi and σj happens to exist in
the Erdős-Rényi fraction, and σi gets chosen as a source
of charge transfer to σj , then the transfer gets accepted
unconditionally, no matter what happens to the system’s
energy.

• The change into dynamics may seem a bit like increasing
the temperature (β = 1

kT = 10 was fairly large in our
simulations, therefore generally the number of charge
transfers related to stochastic mechanism acting against
the energy factor is insignificant), but in this case only
strictly fixed set of edges is allowed to act against the
energy factor.

The random connections which disturb local self-organization
may be interpreted as a set of long myelinated connections
spanning from tightly connected local group of neurons to

2Its easy to verify that such a modification does not affect the spike flow
distribution.
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Fig. 4. Sample (out) degree distributions (complementary CDF, log-log plots) of systems with various density of Erdős-Rényi fractions. The left figure
shows results from simulation of 1000 vertices, the right plot presents corresponding results from simulation of 5000 vertices. Clearly for the smaller system
the presence of Erdős-Rényi fraction with approximately 2 edges/node already seriously disturbs the power law. The bigger system remains stable until the
density of Erdős-Rényi fraction reaches approximately 5 edges/node.
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Fig. 5. Degree distributions (complementary CDF, log-log plots) of systems of various sizes plotted together. The left figure shows the original spike flow
model, where the power law is well pronounced for a variety of sizes. The right one shows the model equipped with Erdős-Rényi fraction of approximately
3 edges/node. Note the curvature changes as the number of vertices gets increased. While small systems clearly reveal exponential decay, the distribution of
a system of 5000 vertices (red) begins to resemble a power law.

some other such group placed in some more or less random
parts of the ”brain”. The main question investigated in this
paper is whether (and to what extent) the introduction of
Erdős-Rényi fraction disturbs the winner-take-all dynamics
and power laws. Simulations were carried for a number of
instances of the spike flow model ranging from 200 up to
5000 vertices.

IV. RESULTS

The simulations revealed a couple of interesting features.
In all cases the introduction of Erdős-Rényi fraction whose
density was less than one edge/node (below the giant com-

ponent phase transition, see [33]) was negligible in terms
of winner-take-all dynamics and power laws. More saturated
Erdős-Rényi fractions however introduced disturbances into
the dynamics and the degree distributions.

Figure 3 shows as the amount of charge in seven best units
(in terms of support – equation (2)) changes with time. The
left plot is based on the original spike flow model (an instance
of 1000 vertices). The winner-take-all dynamics is evident
(most of the interesting things happen in the first 3 ∗ 106

steps, when there is still fair amount of charge in the bulk
units – see Figure 2 – afterward only a few units compete in
charge exchange), the best unit eventually collects all of the
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available charge. The right figure shows corresponding plot of
the spike flow model equipped with an Erdős-Rényi fraction
with about 10 edges/node. Such a graph is quite dense in the
discussed situation (it is with high probability connected and
even if there are disconnected components, they are rather
very small) and clearly it influences the dynamics, in particular
the winner-take-all approximation. Even though the best unit
eventually gathers most of the charge, the process is slower
and non monotonic. Nevertheless the general idea of the bulk
and the elite remains valid. With 1000 vertices in the spike
flow model and 10 Erdős-Rényi edges/node the power law
breaks down though (Figure 4, left). In fact for the system of
1000 vertices even adding Erdős-Rényi fraction with 2 or 3
edges/node significantly disturbs the power law distribution
of node degrees. Things change when the system size is
increased. Figure 5 shows how the node degree distributions
change as the system size gets increased in the original spike
flow model (left) and the model Erdős-Rényi fraction attached
(we only plot complementary cumulative distribution functions
– CCDF – since as argued in [3] frequency histograms can be
misleading). In the latter case, the curvature of distribution
(in terms of a log-log plot) decreases with the system size,
converging to a power law (which is a straight line on a
log-log plot). The simulation of 5000 vertices revealed that
even adding Erdős-Rényi fraction with 3 edges/node leaves
the power law nearly intact. Erdős-Rényi fraction with higher
densities (5-10 edges/node) quite rapidly breaks down the
power law in this case as well (again, see figure 4).

V. CONCLUSIONS

Summarizing the result we note that:
• Sparse Erdős-Rényi fractions added to the spike flow

model leave the power-laws intact
• For more dense Erdős-Rényi fractions and small instances

the power law breaks down
• The relative edge density at which the power law is

broken depends on the size of the investigated system,
i.e. the density which already breaks the power law in the
system of 1000 vertices is still acceptable in the system
of 5000 vertices.

• We conjecture that this is a general principle, and even
bigger systems could allow for more dense Erdős-Rényi
fractions, still retaining fair power law approximation

The existence of power law structures in various networks
requires further study. In particular the existence of such
structures in brain activity patterns might be valuable from
medical/compuatational point of view. It is yet unclear whether
power law structure in the brain is of fundamental importance
or is it a byproduct of some other more fundamental mecha-
nisms present in huge information processing networks. The
spike flow model is aimed at shedding some light towards
these issues. In this paper we presented numerical hints
suggesting that the spike flow model is to some extent stable
(in terms of winner-take-all approximation and power law
degree distribution) under addition of random edges which
are allowed to act against the energy factor. Since the spike

flow model is mathematically tractable the next obvious step
is to put together presented result into equations and provide
a formal proof (work currently in progress). Other directions
include supplying the model with topological features.
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