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Abstract— Hopfield networks have gathered a lot of attention  of the local fieldS; := . w;  o; and with probability
in computer science in recent years, as they have the ability exp(—23|S;|) otherwise, with3 > 0 referred to as the
model many interesting phenomena that occur in brains and ., erse temperature. This is the so-called Glauber dyramic

complex physical systems, and yet the model is nice in analgs ; .
In this paper we investigate a simple Hopfield network organ- Recall that under this dynamics the system converges to the

ised in a two dimensional mesh, with localised interactions €quilibrium distributionP(5) = %exp(—ﬁE(&)), where
The network remembers a number of periodically repeated, E(5) := —3 >, ; wi joi0; is the so-called energy function
spatially correlated patterns. The weights are obtained \a  whereasZ, often referred to as the partition function, stands
Hebbian learning rule combined with some extra information for the normalizing constant. In the sequel, we shall always

about the structure of correlations between the patterns, hat th . fficiently | . that th t ..
is our system is in the so called phase coexistence regime in@ssume av is sufficiently large, i.e. that the system is in

which the free energy for all of the patterns is equal (none of 0W temperature regime

the patterns dominates in the sense it is the unique minimise In practice one usually assumes that= % This is cor-

of the free energy). The number of remembered patterns is wel  rect in principle as long as patter#s... P, are independent,

below the memory limits to simplify the analysis and avoid ay \ypich is rather seldom satisfied in real world applications.

network’s capacity problems, we can therefore say the netwé .

is in finite loading regime. We argue that such a system can In general, with the patterns more or less correlated the

be accurately analysed in mesoscopic scale, in which it digys ~ Parameter vectos should be chosen in the way that would

some phenomena characteristic for systems with large scale re-establish their joint stability — that is to say, as made

isotropic interactions (e.g. Kac potential systems near LUeowitz-  precise below(as, ..., a,) should coincide with the phase

Penrose limif) like sharp phase interfaces, motion by mean cqeyistence point. To put it in intuitive terms, in the prese

curvature etc. T . o .

of non-negligible correlations it is to be expected that, in

. INTRODUCTION the course of the retrieval process, the patterns which are

ore similar to each other will form ’coalitions’ against

Assume we have a 2d pattern recognising ne{-n A, . . K
work (content-addressed associative memory) and patterrt?éJ se exhibiting weaker correlations, possibly makingthe

: : ; unstable. This phenomenon can be compensated for and
Py ... P,. The weights in such a network are given by L N, .
prevented by adjusting the parametersand by assigning

n ) ) larger o« to weaker patterns. It was shown in [11] that such
Wij = Zo‘kpk [P 15] (1) choice ofa is uniquely determined by the patterns and the
k=1 temperature of the system. Assumifigo be large enough,
whereay, € [0, 1], Pli] € {-1,1} and we can use the Pirogov-Sinai theory to characterize the join
" geometry of stability regions for all subsets of the pattern
Zo‘k -1 (2) collection {Py,..., P, }. Note that in the particular zero-
1 temperature case the problem of choosingas been solved

r(;:md an iterative algorithm combining both the features of
Mebbian rule and simple perceptron learning is available
for training Hopfield-type networks in this setting, see [3]

(learning rule 1) and the references therein. As argued in
{111] this does not have to be the correct choice for non-zero

The o parameters balance the strength between patter
They are often chosen as simply= % although as argued
in [11] that is not particularly the best thing to do if patter
P, are correlated spatiafty

To avoid degeneracies, throughout this paper we make t
natural assumption that contributions 49 ; coming from
different patterns are linearly independent, in particttés
excludes the degenerate case of two patterns being negati
of each other. At a non-zero temperatyte!' the network
evolves by flipping the state of a randomly chosen un
o; with probability 1 if it did not agree with the sign

eemperatures though.

It should be noted that, our research being focused on
{/he influence of the correlation structure upon the pattern
s?ability, we work in strictly finite loading regime, with
a relatively small number of patterns memorized by large
I - S
networks, thus avoiding any network capacity problems as
falling beyond the scope of the present article.

For readers convenience we will briefly recall some of thesarents in To rep_resent strong and regular SPa“_a' correlf';\tlon stract
this paper as well. we require our patterns to be periodic, that is to say the



pattern in a large region splits into a collection lbdsic This means in particular that for most choices of
squaresontaining periodic repetitions of sorbasic pattern (a1, ..., ;) exactly one pattern is stableand only under
Moreover, we localize the connections, that is to say eaatareful choice ofa do we hit phase coexistence hypersur-
unit is connected only to units lying at lattice sites witliin faces. Clearly, the purpose of the considered networkggbein
certain given distance. These assumptions place our modelmemorize and retrieve all patterns, we should aim at iden-
within the general framework of lattice Gibbs measures, sd#ying the phase coexistence point for all pattefis. . . , P,

[4]. For a finite number of memorized patterns this puts uand setting the values d¢fv, ..., «,) accordingly.

in a position to apply the mathematical Pirogov-Sinai tigeor We conclude this section by noting that, as already men-
providing qualitative characterization of low temperaturtioned, all our considerations are specialized to the case o
phase diagramssee [14], [15]. To formulate the results of 3 large enough (low temperature regime). This is due to the
this theory, we introduce the following concept of patterrfact that at a certain inverse temperat@ralepending on the
stability. For a given patter® and a given large rectangular set of memorized patterns, an order-disorder phase fti@msit
region R we fix the contents of the boundary basic squaresccurs and at high enough temperatures the system starts
to coincide with the basic pattern corresponding®d\ext, ignoring the boundary conditions and producing disordered
we run the Glauber dynamics for the interior neurons whileandom mixtures of all stable patterns rather than trying to
keeping the states of the boundary uritszen until the retrieve a particular one, see e.g. [5] or Lectures 5,6,Bjn |
system is close to thermodynamic equilibrium. In low enough

temperatures the structure of this equilibrium is often the
following: the domainR contains anoceanof sites whose
states agree with the pattefhsurrounding isolated and small
disagreement islandsThe mathematical theory formalizes

it in infinite volume limit stating that under appropriate

conditions all the disagreement islands are finite and surig. 1. Examples of correlated patterns used in the sinuuiafihe leftmost
ded by the infinit d ted ¢ pattern is the strongest one (it exhibits the lowest energplss). The

unde . y € Inhinite and connecte agregmen 9993”-5 cond one from the left is highly correlated to the first oné @& forms

the equilibrium measure for boundary conditidhexhibits a 'coalition’ against the third one , exhibiting the lowestrrelations with

such a structure. we call it thaure phasecorresponding to other patterns. The fourth pattern has rather low cormatiwith the other

' . . ones as well.

P and we say thaf is stable otherwise we say that pure

phase corresponding tB does not exist and we declare

unstable Note that in this setting a pattern is stable if itA. Model details

can be retrieved only from the boundary information (frozen In this paper we will focus mainly on the phenomena
in the course of system evolution), which is stronger thaBbserved in simulations for a choice of such that the

the usually adopted definitions, see Section 4.1 in [10]. Igystem is approximately in the phase coexistence regime.

;h's ?let;'”l?' fol;suffugerrl]tly largs, nfwor?ulo c_e:tamhte(f:himcal As mentioned before, establishing exact location of phase
etails falling beyond the scope of this article, the foliogr coexistence point in general case is not triiaDne can

statements are direct conclusions of the Pirogov-Sinaithe however easily derive appropriatein zero temperature [8],

see [14], [15]. by solving a system of linear equations, but as the tempera-

« In the space of parametesis oy € [0, 1], 35, ax = ture rises the coordinates of phase coexistence point ehang
1 there exists a unique choice Of1,...,a,) under For the scope of this article we will be mostly satisfied
which all patternspy, ..., P, are stable. We say that \ith the zero temperature solution since the temperature of
all k pure phases co-exist at this point. examined system is low, however further in the paper we

» For each subset C {1,...,n} of cardinalityn — 1  ghow that a slight deviation from the exact solution can lead

there exists a smooth curve in the parameter spacetg gbservable effects. As suggested before these issues hav
marking the coexistence of phasés; | i € m}. Al peen described in details in [11], some examples of phase
thesen curves meet at the point of coexistence of alljagrams and numerical approximations of phase coexistenc
phases. point have also been provided. Yet there is a simple teckniqu
o In general, fork > 1 and form C {1,...,n} of that enables us to model phase coexistence regime in non-
cardinality & there exists am — k-dimensional smooth zero temperatures, that is the interactions of stable natte
hypersurface in the parameter spacemarking the and their negatives. Note that in the absence of externdl fiel
coexistence of phases fdiP; | i € 7}. Moreover, jnteractions between a pattern and its negative are intiglici
hypersurfaces corresponding toand «’ meet at the pajanced, independently of the parameters (stability of a
.hypersu.rface marking the coexistence of phases Wi%ttem imposes stability of its negative).
indices inm U 7", We assume that each neuron in our system interacts with
2Note that Pirogov-Sinai theory covers systems in thermadyoal limit surrounding neighbours in range of four neurons (figure 2).
(infinite), while our system is evidently finite, so it is natpriori obvious
to what extent experimental result would match with theéocatpredictions. 3There are no efficient algorithms available for the probland some ex-

It seems however, as argued further in the paper, that thedmred system pressions that can be derived from Pirogov-Sinai theor leponentially
size is large enough to clearly observe effects predictethéytheory. growing complexity of coefficients.



exhibits quite nice continuos behaviour that seems quite

.=====. general. Unfortunately, precise mathematical proofs achsu
[ [ [T T[] phenomena are rather complicated and were provided for
========= specific classes of systems, like Kac potentials. Even thoug
EEEEEEEEE our model is not strictly a Kac potential model, we well
I=======I briefly recall some of the key ideas of Kac potential theory,

as we argue in the paper it can be a qualitatively good
theoretical description of the behaviour observed in our
simulation. Kac potentials have been introduced by Kac,
Fig. 2. Graphical representation for the range of inteoactn considered (Jhlenbeck and Hemmer [7] in the 60's for modelling, in
model. Each pixel in the grid corresponds to a neuron. Thekht@uron in S ] '
the middle interacts only with those gray. the framework of stat_|s_t|cal mechan_lcs_, the_ van der Waa_ls
theory of phase transitions. The main idea in this theory is
scaling. There are three basic scales in the mentionedhsyste

We have chosen this radius of interaction as big enough lgttice distance, interactions range and size of the system
be able to analyze system in terms of mesoscopic theofyn oneé hand we have Ising models in which the range of
yet small enough to save computational power and be abi¥eractions matches lattice distance (for Ising systeres w
to quickly reach approximate thermodynamical equilibriumhave some nice theoretical results, proofs of phase transit
The consequence of such small range of interaction is tt® Peierls argument [12] and other classical outcomes ) , on
fact that the system is not perfectly isotropic and som#€ other hand we have mean field systems in which the
disturbance by pattern structure may occur (the simulatiohi@nge of interactions matches the size of the system (these
have shown however, that the disturbance is not large, siné¥stems provide phase transitions easily but are considere
the patterns are themselves quite small in comparison wi@$ nNon physical since the existence of phase transition does
the range of interactions). We can also model isotropi@ot even depend on the system’s dimension ) . Between these
behaviour by introducing patterns that are approximatefvo extreme situations we have systems described as those
invariant to rotation (for example patte@ and P,). with "large but finite range of interactions”.

Note that all our considerations are provided in finite Definition 2.1: Kac potential (informal). Assume we have
loading regime, that is the number of remembered patterdsfunction./ : R? x R — R that satisfies:
is relatively small and we don't have to worry about the  J(r,7') = J(r +a,r’ +a) > 0 for all 7,7' anda € R?
network’s capacity. In fact increasing the number of pager « J(0,7) is continuous with compact support and nor-
would lead to a significant decrease of the critical tempera- malised as probability kernel
ture where the order/disorder phase transition occurs.

The model we consider consists of 250x250 neurons, / J(0,r)dr =1 3)
organized on a 2d lattice. The network is trained with rule Re
described in 1. The global system is trained to remember p€onsider a system with coupling constants satisfying:
riodic repetitions of small 5x5 patterns (basic cells). fay 4
we can observe global phenomenon of pattern retrieval. The Jy(z,y) =12 (ye, 1) (4)
network has a fix_ed boundary qonglition given by repetitio.nﬁ)r ~ > 0. We say that such a system has a Kac potential.
of one of the basic patterns. This simulates thermodyndmica |, yhe ahove definition we omit a lot of important details
limit (infinite extension of the system), so we simulate jast jiq the definition of energy function, for precise definitio
small portion of a hypothetical infinite system. The dynaniCsee chapter 3 in [13]. A lot of theoretical considerations
in our simulation is Asy_nchronous Glauber dynamics. T_hﬁbout Kac potentials are done in the so called Lebowitz-
network evolves by flipping spins of randomly chosen unitsegnroge fimit withy — 0. This limit doesn't have any
with probability 1 if they did not agree with the sign of gy aightforward physical meaning, it is more a tool used on
local field S; = 3 _; w; ;o; and with probabilityexp(~2065:)  theoretical ground to provide proofs of certain theorerks I
otherwise, withj > 0 referred to as inverse temperature. yhe existence of phase transitions etc. We can however think
of a system that is close to Lebowitz-Penrose limit, as of a
system in which the range of interactions is sufficientlgéar

The aim of the simulation was to check if the system cato exhibit behaviour that has been proven to take place in the
be described in terms of mesoscopic scale theory, therefdimmit. As we argue in further sections, numerical experitsen
we are not interested in the state of a particular neuroshow that it is not very difficult to get "near” the Lebowitz-
but a joint state of whole groups of neurons neglectin@enrose limit with the system we examine even though a
all the statistical disturbances. This allows us move fromange of four neurons in our model does not seem "large”
statistical mechanics of the model into continuos mectsnicat first glimpse. Another important detail is that formally
and provide some expressions describing interestingresmtu Kac Potentials are defined for systems where there are two
of the evolution in terms of differential equations. As simow opposite states of magnetisation whereas we allow three or
below, in low temperature and mesoscopic scale the systanore patterns. This flaw can be overcome by introducing

II. MOTIVATIONS



generalised Kac potential in systems with more complex — Filled up (including the frozen boundary) with a
structure of spins (this requires some tricks in refinement chosen pattern with a blob of another (in most cases
of the Hamiltonian but is rather painless). stable) pattern inside.

o The simulation was then carried out, with low temper-
ature Glauber dynamics.

As mentioned before we analyse the evolution of the « In the experiments with shrinking phase interfaces, an
system in temperature low enough, to expect stable phases estimate number of iterations necessary to have a blob
(energy wins against entropy). Furthermore, we try to tet th of one pattern inside the other vanished was computed
phase coexistence point by solving linear equations ofggner (data for the plots 6, 7).
as follows:

IIl. RESULTS

B. Bulk phenomena

For a choice ofo where one pattern strongly dominates,
(Pslai, az, ..., an) some bulk phenomena can be observed. The process of
: (5) consuming a blob of weak pattern becomes rapid and occurs

' all over its volume. The existence of this effect is quite
E(Ppilar, ag,.son) = E(Pplar, ag, ... an) obvious and can be clearly observed in the course of the
oo+ =1, simulation (fig. 3).

E(P1|o¢1,oz2,...,ozn) =
E(P2|o¢1,oz2,...,ozn) =

whereE(P,|a1, ..., ay,) is the 'specific energy’ of patterR,
for parametersy,, ..., a,,. Since the energy is defined by

_ 1
E(U) = — 5 ZO’inwiJ =
4,J

1 - N
_ 5 ZO’iO'j Zakpk[Z]Pk[j]a

the above expression can be expanded as follows

E(Plag,...,an) = Fi ) L . ) o
ig. 3. Network’s evolution in the regime of strict domiraati of one
= a1 E(P;|1,0,..,0) + ... + a, E(P.]0, ..., 1) pattern, at a medium-low temperaturd & 0.2), at the initial stage of
simulation (left) and afted-10* steps. Ellipse and circle of unstable patterns
and appropriate solutioml, e Oén] can be provided_ Un- are instantly consumed by the dominating stable one. Thisghienomenon

fortunately as argued in [11] phase coexistence pointsdriﬂs very rapid in contrast to slow boundary evolution diseasturther in the
as temperature changes, and this linear approximation caé}ﬂer'

be considered rough (especially in medium and high tem-

peratures). To overcome this restriction we use negativ€s Boundary phenomena

to investigate behaviour in strict phase coexistence regim
since we do not have an external field. The experiments ha
shown that the system is big enough to clearly exhibit sorr
interesting behaviour and moreover some other effectteckla
to thea vector and its position against the phase coexisten
point have been revealed.

A. Experimental procedure

All the simulations in this paper were performed as
follows:

« A set of patterns was chosen. In some cases it includt
all four patterns (See fig. 1), and in some there was only

one pattern (pattern/negative case).
| P f (p tt 9 ) imat h Fig. 4. Network’s evolution in the phase coexistence regimédlifferent
» In case Or many patierns, an approximaté pnase Cgl'ages (random initialisation). One of the patterns isdia®d in the sense its

existence regime was established by solving the zemging set as the boundary condition (therefore, eventiiaiill dominate

temperature approximation (equation 5) on the whole board). One can notice the spots of other staditerps (as
RN . well as their negatives) sharing domain. Please note tlatbtundaries
« The network was set to its initial state: between the spots are sharp. Another interesting detaflaisthese spots

— Random, with boundary condition set as one of theeem to overlap.
remembered patterns.




is a difficult problem unless we consider zero temperature
system. In order to overcome these restrictions we decided
to perform two simulations:

o In medium-low temperature with only one pattern and
its negative - as mentioned before phases of a pattern
and its negative are always mutually stable.

« In very low temperature with four patterns, assuming
that the phase coexistence point is well approximated
with the result achieved in the zero temperature. From
other considerations [11] we know that the movement of
phase coexistence point in the low temperatures regime

Fig. 5. Network’s evolution in the coexistence regime. Béeamote the is not radical, however results presented in this paper
stable sharp interfaces between the patterns, as well dadhéhat during show that even small deviation of thevector from the

the simulation the ellipse in the middle has turned into alkorale, which ; i ; ; ;
suggests movement by curvature. These phenomena are siostadie in pregse position of phasg coemstencg point may resultin
contrast with those from figure 3. noticeable perturbation in the behaviour of the system.

Note that the shrinking by curvature implies that the radius

of circular spot of one pattern inside the other satisfies
More interesting effect that we can observe is shrinking by )
mean curvature of the phase boundaries (interfaces between dr = —\-c(r)dt = —dt (6)
the regions dominated by patterns that occur during the r
simulation). Motion by mean curvature is common in naturé/Vhere r is the radius of the spot andr) = % is the
for example bubbles of gas scattered in liquid change theturvature. From the above expression we derive
shapes according to mean curvature of their surfaces (it is 9
one of the reasons why bubbles are spherical). Fluid floating Dot (7
in gas (or vacuum) in zero gravity is another example of 2
such behaviour. Note that these examples have somethihlgat implies that the relation between the initial radié (
else in-common with the issues we consider here - they a@éthe spot and the time (number of stefsneeded for this
examples of phase interfaces (gas/fluid). spot to vanish should be strictly quadratif & eR?) and
Definition 3.1: Movement by mean curvature. A family this we can easily check experimentally. The first simutatio
of bounded, open smooth sefs in R? moves smoothly revealed perfectly quadratic relation as predicted (seé)fig
by mean curvature with velocity > 0 in the time interval The empirical data can be very accurately approximated with
[0,T], T > 0, if for any ¢ € [0, 7], the boundary’; of A, ax? parabola, by least squares method. Simple differential

is smooth and its points have normal (directed towards ttnalysis confirms the quadratic character of the relation. |
exterior of A;) velocity the second simulation we hit on something interesting (see

fig. 7). The relation again seemed quadratic, but with non
V= —VK negligible linear part (the data was well approximated with
here 1 is mean curvature calculated as positive if thémg + bz + ¢ function with non-negligibleb, whereas the
w . . urvature: caicu posilive approximation withaz? + ¢ was quite poor). We claim to
concavity ofT; is towards its interior. h . .
ave an explanation for this phenomenon. If we assume that

We Tginsider 2d system so there is only e curvatuEﬁe relation is in fact quadratic with relevant linear p#ngn

!?a“'%‘m?te“ therefore W? .W'" be calllnng _th|s_ phenomenoE‘onsequentlywe argue that the equation 6 should be remritte
shrinking by curvature” instead of "shrinking by mean

O s follows:
curvature” which is more general and assumes more cﬁl

mensio_ns and curvature parameters. The model we consider dr = =X-c(r)dt + p = _—/\dt +1u (8)

is relatively small (250x250 neurons, 50x50 basic pattern- r

cells), whereas the mentioned effects are considered in Higr some non zero parameter. That suggests that the
systems where the range of interaction is insignificant ispeed of shrinking depends on curvature and some other
comparison to the size of the system and the size of umknown parameter. A more thoughtful investigation of the
single particle is insignificant in comparison to the ranfie cobserved inconsistency lead us to conclusion that the fact
interaction (therefore such systems are "almost” contijiuo of not being exactly in the phase coexistence point might
We decided however to run the simulation hoping to obserdgave an impact on the result of the experiment. Note that
some qualitative effects. First of all we have to note thahe second simulation was carried out in the approximate
we can observe sharp phase interfaces, which is absolutelyexistence of four pattern phases. The phase coexistence
necessary to expect any shrinking phenomena (See fig. phint was extracted from linear equations of energy that are
The shrinking phenomenon (as well as sharp interfaces) ogalid in the zero temperature regime. From the consideratio
curs only in the phase coexistence regime and, as mentioriad[11], we know that the phase coexistence point tends
before, determining the phase coexistence point in genetal drift as temperature rises in such a manner that strong
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Fig. 6. Relation between number of iterations needed fautar spot of Fig. 7. Plots similar to those from figure 6 obtained from tleeod
the pattern’s negative to vanish in the ocean of a patternttadadius of simulation. Note that the relation is still rather quadratbut the az?2
mentioned spot. The top figure shows also first and secondatiees. Note  parabola (blue) gives significantly worse results in appnating empirical
that the second derivative (blue) is approximately constémat suggests that curve than theiz? + bx + ¢ parabola, what implies relevance of the linear
the relationship is quadratic. The bottom figure shows twalpalic curves part of the relation.

(a-z2 anda- 22 +b-z 4+ ¢) obtained from the least squares method, which

perfectly approximate empirical data.

of interactions does not seem large at all, it clearly exiibi

patterns are getting even stronger, while the weak patterasenomena like sharp phase interfaces and their dynamical
are getting weakér In our simulation the surrounding patternbehaviour like shrinking by mean curvature. Some other
was the strong one, while the one inside the spot was weakiteresting phenomena occurred when the simulation ran in
Even though the bulk effects typical for strong dominatior vicinity of the phase coexistence point, where movement
of one pattern were not observed, the dominating pattelty curvature gains some extra force originating from the
gained some extra force in consuming the spot of the weakiefoken symmetry between the patterns. On the other hand,
one. They parameter in the equation refers to that extravhen one of the phases strictly dominates, the behaviour
force. Note that actually if our model was big enough (saproves to be completely different and reveals instant bulk
10000 x 10000 neurons) we would observe bulk phenomenaature. In the scope of these results is seems reasonable to

for the same parameters (but in a respectively larger tinfeake an assumption that some activations in brains could
scale). evolve (with respect to topology of neural connections) in a

way described by mechanics of phase interfaces, which by
IV. CONCLUSIONS itself seems quite interesting, but beyond question reguir

The experiments we described in the paper provide n@dditional examination.
merical evidence for conjecture, that Hopfield networks The mesoscopic approach has certain advantages over
with localised interactions under appropriate conditifos ~ the reductionist analysis, since neurodynamics of comgoun
temperature and phase coexistence regime) can be analy8edral systems can be enormously complex. The analysis
in terms of mesoscopic theory well approximated by Kac pd? the "medium” scale lets us neglect all the (possibly

tentials. Even though our system is quite small and the rang&important) details and extract the significant facts atiuei
investigated models, and provide an insight into intengsti

“4"stronger/weaker” as described in the introduction. phenomena that occur in bigger scales. Unfortunatelyether
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