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Abstract— Hopfield networks have gathered a lot of attention
in computer science in recent years, as they have the abilityto
model many interesting phenomena that occur in brains and
complex physical systems, and yet the model is nice in analysis.
In this paper we investigate a simple Hopfield network organ-
ised in a two dimensional mesh, with localised interactions.
The network remembers a number of periodically repeated,
spatially correlated patterns. The weights are obtained via
Hebbian learning rule combined with some extra information
about the structure of correlations between the patterns, that
is our system is in the so called phase coexistence regime in
which the free energy for all of the patterns is equal (none of
the patterns dominates in the sense it is the unique minimiser
of the free energy). The number of remembered patterns is well
below the memory limits to simplify the analysis and avoid any
network’s capacity problems, we can therefore say the network
is in finite loading regime. We argue that such a system can
be accurately analysed in mesoscopic scale, in which it displays
some phenomena characteristic for systems with large scale,
isotropic interactions (e.g. Kac potential systems near Lebowitz-
Penrose limit) like sharp phase interfaces, motion by mean
curvature etc.

I. I NTRODUCTION

Assume we have a 2d pattern recognising net-
work (content-addressed associative memory) and patterns
P1 . . . Pn. The weights in such a network are given by

wi,j =

n
∑

k=1

αkPk[i]Pk[j] (1)

whereαk ∈ [0, 1], Pk[i] ∈ {−1, 1} and
n

∑

k=1

αk = 1 (2)

The α parameters balance the strength between patterns.
They are often chosen as simplyα = 1

n
although as argued

in [11] that is not particularly the best thing to do if patterns
Pk are correlated spatially1.

To avoid degeneracies, throughout this paper we make the
natural assumption that contributions towi,j coming from
different patterns are linearly independent, in particular this
excludes the degenerate case of two patterns being negatives
of each other. At a non-zero temperatureβ−1 the network
evolves by flipping the state of a randomly chosen unit
σi with probability 1 if it did not agree with the sign

1For readers convenience we will briefly recall some of the arguments in
this paper as well.

of the local field Si :=
∑

j wi,jσj and with probability
exp(−2β|Si|) otherwise, withβ ≥ 0 referred to as the
inverse temperature. This is the so-called Glauber dynamics.
Recall that under this dynamics the system converges to the
equilibrium distributionP(σ̄) = 1

Z
exp(−βE(σ̄)), where

E(σ̄) := − 1

2

∑

i,j wi,jσiσj is the so-called energy function
whereasZ, often referred to as the partition function, stands
for the normalizing constant. In the sequel, we shall always
assume thatβ is sufficiently large, i.e. that the system is in
low temperature regime.

In practice one usually assumes thatαi = 1

n
. This is cor-

rect in principle as long as patternsP1...Pn are independent,
which is rather seldom satisfied in real world applications.
In general, with the patterns more or less correlated the
parameter vectorα should be chosen in the way that would
re-establish their joint stability – that is to say, as made
precise below,(α1, . . . , αn) should coincide with the phase
coexistence point. To put it in intuitive terms, in the presence
of non-negligible correlations it is to be expected that, in
the course of the retrieval process, the patterns which are
more similar to each other will form ’coalitions’ against
those exhibiting weaker correlations, possibly making them
unstable. This phenomenon can be compensated for and
prevented by adjusting the parametersα and by assigning
largerα to weaker patterns. It was shown in [11] that such
choice ofα is uniquely determined by the patterns and the
temperature of the system. Assumingβ to be large enough,
we can use the Pirogov-Sinai theory to characterize the joint
geometry of stability regions for all subsets of the pattern
collection {P1, . . . , Pn}. Note that in the particular zero-
temperature case the problem of choosingα has been solved
and an iterative algorithm combining both the features of
Hebbian rule and simple perceptron learning is available
for training Hopfield-type networks in this setting, see [3]
(learning rule I) and the references therein. As argued in
[11] this does not have to be the correct choice for non-zero
temperatures though.

It should be noted that, our research being focused on
the influence of the correlation structure upon the pattern
stability, we work in strictly finite loading regime, with
a relatively small number of patterns memorized by large
networks, thus avoiding any network capacity problems as
falling beyond the scope of the present article.

To represent strong and regular spatial correlation structure
we require our patterns to be periodic, that is to say the
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pattern in a large region splits into a collection ofbasic
squarescontaining periodic repetitions of somebasic pattern.
Moreover, we localize the connections, that is to say each
unit is connected only to units lying at lattice sites withina
certain given distance. These assumptions place our model
within the general framework of lattice Gibbs measures, see
[4]. For a finite number of memorized patterns this puts us
in a position to apply the mathematical Pirogov-Sinai theory
providing qualitative characterization of low temperature
phase diagrams2, see [14], [15]. To formulate the results of
this theory, we introduce the following concept of pattern
stability. For a given patternP and a given large rectangular
regionR we fix the contents of the boundary basic squares
to coincide with the basic pattern corresponding toP. Next,
we run the Glauber dynamics for the interior neurons while
keeping the states of the boundary unitsfrozen, until the
system is close to thermodynamic equilibrium. In low enough
temperatures the structure of this equilibrium is often the
following: the domainR contains anoceanof sites whose
states agree with the patternP surrounding isolated and small
disagreement islands. The mathematical theory formalizes
it in infinite volume limit stating that under appropriate
conditions all the disagreement islands are finite and sur-
rounded by the infinite and connected agreement ocean. If
the equilibrium measure for boundary conditionP exhibits
such a structure, we call it thepure phasecorresponding to
P and we say thatP is stable, otherwise we say that pure
phase corresponding toP does not exist and we declareP
unstable. Note that in this setting a pattern is stable if it
can be retrieved only from the boundary information (frozen
in the course of system evolution), which is stronger than
the usually adopted definitions, see Section 4.1 in [10]. In
this setting, for sufficiently largeβ, modulo certain technical
details falling beyond the scope of this article, the following
statements are direct conclusions of the Pirogov-Sinai theory,
see [14], [15].

• In the space of parametersα, αk ∈ [0, 1],
∑n

k=1
αk =

1 there exists a unique choice of(α1, . . . , αn) under
which all patternsP1, . . . , Pn are stable. We say that
all k pure phases co-exist at this point.

• For each subsetπ ⊆ {1, . . . , n} of cardinality n − 1
there exists a smooth curve in the parameter spaceα

marking the coexistence of phases{Pi | i ∈ π}. All
thesen curves meet at the point of coexistence of all
phases.

• In general, fork ≥ 1 and for π ⊆ {1, . . . , n} of
cardinalityk there exists ann− k-dimensional smooth
hypersurface in the parameter spaceα marking the
coexistence of phases for{Pi | i ∈ π}. Moreover,
hypersurfaces corresponding toπ and π′ meet at the
hypersurface marking the coexistence of phases with
indices inπ ∪ π′.

2Note that Pirogov-Sinai theory covers systems in thermodynamical limit
(infinite), while our system is evidently finite, so it is nota priori obvious
to what extent experimental result would match with theoretical predictions.
It seems however, as argued further in the paper, that the considered system
size is large enough to clearly observe effects predicted bythe theory.

This means in particular that for most choices of
(α1, . . . , αn) exactly one pattern is stableand only under
careful choice ofα do we hit phase coexistence hypersur-
faces. Clearly, the purpose of the considered networks being
to memorize and retrieve all patterns, we should aim at iden-
tifying the phase coexistence point for all patternsP1, . . . , Pn

and setting the values of(α1, . . . , αn) accordingly.
We conclude this section by noting that, as already men-

tioned, all our considerations are specialized to the case of
β large enough (low temperature regime). This is due to the
fact that at a certain inverse temperatureβ, depending on the
set of memorized patterns, an order-disorder phase transition
occurs and at high enough temperatures the system starts
ignoring the boundary conditions and producing disordered
random mixtures of all stable patterns rather than trying to
retrieve a particular one, see e.g. [5] or Lectures 5,6,7 in [9].

Fig. 1. Examples of correlated patterns used in the simulation. The leftmost
pattern is the strongest one (it exhibits the lowest energy surplus). The
second one from the left is highly correlated to the first one and it forms
a ’coalition’ against the third one , exhibiting the lowest correlations with
other patterns. The fourth pattern has rather low correlations with the other
ones as well.

A. Model details

In this paper we will focus mainly on the phenomena
observed in simulations for a choice ofα such that the
system is approximately in the phase coexistence regime.
As mentioned before, establishing exact location of phase
coexistence point in general case is not trivial3. One can
however easily derive appropriateα in zero temperature [8],
by solving a system of linear equations, but as the tempera-
ture rises the coordinates of phase coexistence point change.
For the scope of this article we will be mostly satisfied
with the zero temperature solution since the temperature of
examined system is low, however further in the paper we
show that a slight deviation from the exact solution can lead
to observable effects. As suggested before these issues have
been described in details in [11], some examples of phase
diagrams and numerical approximations of phase coexistence
point have also been provided. Yet there is a simple technique
that enables us to model phase coexistence regime in non-
zero temperatures, that is the interactions of stable patterns
and their negatives. Note that in the absence of external field
interactions between a pattern and its negative are implicitly
balanced, independently of theα parameters (stability of a
pattern imposes stability of its negative).

We assume that each neuron in our system interacts with
surrounding neighbours in range of four neurons (figure 2).

3There are no efficient algorithms available for the problem,and some ex-
pressions that can be derived from Pirogov-Sinai theory have exponentially
growing complexity of coefficients.
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Fig. 2. Graphical representation for the range of interaction in considered
model. Each pixel in the grid corresponds to a neuron. The black neuron in
the middle interacts only with those gray.

We have chosen this radius of interaction as big enough to
be able to analyze system in terms of mesoscopic theory,
yet small enough to save computational power and be able
to quickly reach approximate thermodynamical equilibrium.
The consequence of such small range of interaction is the
fact that the system is not perfectly isotropic and some
disturbance by pattern structure may occur (the simulations
have shown however, that the disturbance is not large, since
the patterns are themselves quite small in comparison with
the range of interactions). We can also model isotropic
behaviour by introducing patterns that are approximately
invariant to rotation (for example patternP1 andP2).

Note that all our considerations are provided in finite
loading regime, that is the number of remembered patterns
is relatively small and we don’t have to worry about the
network’s capacity. In fact increasing the number of patterns
would lead to a significant decrease of the critical tempera-
ture where the order/disorder phase transition occurs.

The model we consider consists of 250x250 neurons,
organized on a 2d lattice. The network is trained with rule
described in 1. The global system is trained to remember pe-
riodic repetitions of small 5x5 patterns (basic cells). That way
we can observe global phenomenon of pattern retrieval. The
network has a fixed boundary condition given by repetitions
of one of the basic patterns. This simulates thermodynamical
limit (infinite extension of the system), so we simulate justa
small portion of a hypothetical infinite system. The dynamics
in our simulation is Asynchronous Glauber dynamics. The
network evolves by flipping spins of randomly chosen units,
with probability 1 if they did not agree with the sign of
local fieldSi =

∑

j wi,jσj and with probabilityexp(−2βSi)
otherwise, withβ > 0 referred to as inverse temperature.

II. M OTIVATIONS

The aim of the simulation was to check if the system can
be described in terms of mesoscopic scale theory, therefore
we are not interested in the state of a particular neuron,
but a joint state of whole groups of neurons neglecting
all the statistical disturbances. This allows us move from
statistical mechanics of the model into continuos mechanics,
and provide some expressions describing interesting features
of the evolution in terms of differential equations. As shown
below, in low temperature and mesoscopic scale the system

exhibits quite nice continuos behaviour that seems quite
general. Unfortunately, precise mathematical proofs of such
phenomena are rather complicated and were provided for
specific classes of systems, like Kac potentials. Even though
our model is not strictly a Kac potential model, we well
briefly recall some of the key ideas of Kac potential theory,
as we argue in the paper it can be a qualitatively good
theoretical description of the behaviour observed in our
simulation. Kac potentials have been introduced by Kac,
Uhlenbeck and Hemmer [7] in the 60’s for modelling, in
the framework of statistical mechanics, the van der Waals
theory of phase transitions. The main idea in this theory is
scaling. There are three basic scales in the mentioned system:
lattice distance, interactions range and size of the system.
On one hand we have Ising models in which the range of
interactions matches lattice distance (for Ising systems we
have some nice theoretical results, proofs of phase transitions
by Peierls argument [12] and other classical outcomes ) , on
the other hand we have mean field systems in which the
range of interactions matches the size of the system (these
systems provide phase transitions easily but are considered
as non physical since the existence of phase transition does
not even depend on the system’s dimension ) . Between these
two extreme situations we have systems described as those
with ”large but finite range of interactions”.

Definition 2.1: Kac potential (informal). Assume we have
a functionJ : R

d × R
d → R that satisfies:

• J(r, r′) = J(r + a, r′ + a) ≥ 0 for all r, r′ anda ∈ R
d

• J(0, r) is continuous with compact support and nor-
malised as probability kernel

∫

Rd

J(0, r)dr = 1 (3)

Consider a system with coupling constants satisfying:

Jγ(x, y) = γdJ(γx, γy) (4)

for γ > 0. We say that such a system has a Kac potential.
In the above definition we omit a lot of important details

like the definition of energy function, for precise definitions
see chapter 3 in [13]. A lot of theoretical considerations
about Kac potentials are done in the so called Lebowitz-
Penrose limit withγ → 0. This limit doesn’t have any
straightforward physical meaning, it is more a tool used on
theoretical ground to provide proofs of certain theorems like
the existence of phase transitions etc. We can however think
of a system that is close to Lebowitz-Penrose limit, as of a
system in which the range of interactions is sufficiently large
to exhibit behaviour that has been proven to take place in the
limit. As we argue in further sections, numerical experiments
show that it is not very difficult to get ”near” the Lebowitz-
Penrose limit with the system we examine even though a
range of four neurons in our model does not seem ”large”
at first glimpse. Another important detail is that formally
Kac Potentials are defined for systems where there are two
opposite states of magnetisation whereas we allow three or
more patterns. This flaw can be overcome by introducing
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generalised Kac potential in systems with more complex
structure of spins (this requires some tricks in refinement
of the Hamiltonian but is rather painless).

III. R ESULTS

As mentioned before we analyse the evolution of the
system in temperature low enough, to expect stable phases
(energy wins against entropy). Furthermore, we try to hit the
phase coexistence point by solving linear equations of energy
as follows:































E(P1|α1, α2, ..., αn) = E(P2|α1, α2, ..., αn)

E(P2|α1, α2, ..., αn) = E(P3|α1, α2, ..., αn)
...

E(Pn−1|α1, α2, ..., αn) = E(Pn|α1, α2, ..., αn)

α1 + α2 + ... + αn = 1,

(5)

whereE(Px|α1, ..., αn) is the ’specific energy’ of patternPx

for parametersα1, ..., αn. Since the energy is defined by

E(σ̄) = −
1

2

∑

i,j

σiσjwi,j =

= −
1

2

∑

i,j

σiσj

n
∑

k=1

αkPk[i]Pk[j],

the above expression can be expanded as follows

E(Px|α1, ..., αn) =

= α1E(Px|1, 0, ..., 0) + ... + αnE(Px|0, ..., 1)

and appropriate solution[α1, ..., αn] can be provided. Un-
fortunately as argued in [11] phase coexistence point drifts
as temperature changes, and this linear approximation can
be considered rough (especially in medium and high tem-
peratures). To overcome this restriction we use negatives
to investigate behaviour in strict phase coexistence regime,
since we do not have an external field. The experiments have
shown that the system is big enough to clearly exhibit some
interesting behaviour and moreover some other effects related
to theα vector and its position against the phase coexistence
point have been revealed.

A. Experimental procedure

All the simulations in this paper were performed as
follows:

• A set of patterns was chosen. In some cases it included
all four patterns (See fig. 1), and in some there was only
one pattern (pattern/negative case).

• In case of many patterns, an approximate phase co-
existence regime was established by solving the zero
temperature approximation (equation 5)

• The network was set to its initial state:

– Random, with boundary condition set as one of the
remembered patterns.

– Filled up (including the frozen boundary) with a
chosen pattern with a blob of another (in most cases
stable) pattern inside.

• The simulation was then carried out, with low temper-
ature Glauber dynamics.

• In the experiments with shrinking phase interfaces, an
estimate number of iterations necessary to have a blob
of one pattern inside the other vanished was computed
(data for the plots 6, 7).

B. Bulk phenomena

For a choice ofα where one pattern strongly dominates,
some bulk phenomena can be observed. The process of
consuming a blob of weak pattern becomes rapid and occurs
all over its volume. The existence of this effect is quite
obvious and can be clearly observed in the course of the
simulation (fig. 3).

Fig. 3. Network’s evolution in the regime of strict domination of one
pattern, at a medium-low temperature (β = 0.2), at the initial stage of
simulation (left) and after9·104 steps. Ellipse and circle of unstable patterns
are instantly consumed by the dominating stable one. This bulk phenomenon
is very rapid in contrast to slow boundary evolution discussed further in the
paper.

C. Boundary phenomena

Fig. 4. Network’s evolution in the phase coexistence regimein different
stages (random initialisation). One of the patterns is favoured in the sense its
being set as the boundary condition (therefore, eventuallyit will dominate
on the whole board). One can notice the spots of other stable patterns (as
well as their negatives) sharing domain. Please note that the boundaries
between the spots are sharp. Another interesting detail is that these spots
seem to overlap.
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Fig. 5. Network’s evolution in the coexistence regime. Please note the
stable sharp interfaces between the patterns, as well as thefact that during
the simulation the ellipse in the middle has turned into a small circle, which
suggests movement by curvature. These phenomena are slow and stable in
contrast with those from figure 3.

More interesting effect that we can observe is shrinking by
mean curvature of the phase boundaries (interfaces between
the regions dominated by patterns that occur during the
simulation). Motion by mean curvature is common in nature,
for example bubbles of gas scattered in liquid change their
shapes according to mean curvature of their surfaces (it is
one of the reasons why bubbles are spherical). Fluid floating
in gas (or vacuum) in zero gravity is another example of
such behaviour. Note that these examples have something
else in-common with the issues we consider here - they are
examples of phase interfaces (gas/fluid).

Definition 3.1: Movement by mean curvature. A family
of bounded, open smooth setsΛt in R

d moves smoothly
by mean curvature with velocityν > 0 in the time interval
[0, T ], T > 0, if for any t ∈ [0, T ], the boundaryΓt of Λt

is smooth and its points have normal (directed towards the
exterior ofΛt) velocity

v = −νκ

where κ is mean curvature calculated as positive if the
concavity ofΓt is towards its interior.

We consider 2d system so there is only one curvature
parameter, therefore we will be calling this phenomenon
”shrinking by curvature” instead of ”shrinking by mean
curvature” which is more general and assumes more di-
mensions and curvature parameters. The model we consider
is relatively small (250x250 neurons, 50x50 basic pattern-
cells), whereas the mentioned effects are considered in big
systems where the range of interaction is insignificant in
comparison to the size of the system and the size of a
single particle is insignificant in comparison to the range of
interaction (therefore such systems are ”almost” continuos).
We decided however to run the simulation hoping to observe
some qualitative effects. First of all we have to note that
we can observe sharp phase interfaces, which is absolutely
necessary to expect any shrinking phenomena (See fig. 4).
The shrinking phenomenon (as well as sharp interfaces) oc-
curs only in the phase coexistence regime and, as mentioned
before, determining the phase coexistence point in general

is a difficult problem unless we consider zero temperature
system. In order to overcome these restrictions we decided
to perform two simulations:

• In medium-low temperature with only one pattern and
its negative - as mentioned before phases of a pattern
and its negative are always mutually stable.

• In very low temperature with four patterns, assuming
that the phase coexistence point is well approximated
with the result achieved in the zero temperature. From
other considerations [11] we know that the movement of
phase coexistence point in the low temperatures regime
is not radical, however results presented in this paper
show that even small deviation of theα vector from the
precise position of phase coexistence point may result in
noticeable perturbation in the behaviour of the system.

Note that the shrinking by curvature implies that the radius
of circular spot of one pattern inside the other satisfies

dr = −λ · c(r)dt =
−λ

r
dt (6)

Where r is the radius of the spot andc(r) = 1

r
is the

curvature. From the above expression we derive

r2

2
= c − λ · t (7)

That implies that the relation between the initial radius (R)
of the spot and the time (number of stepsT ) needed for this
spot to vanish should be strictly quadratic (T = ǫR2) and
this we can easily check experimentally. The first simulation
revealed perfectly quadratic relation as predicted (see fig6).
The empirical data can be very accurately approximated with
ax2 parabola, by least squares method. Simple differential
analysis confirms the quadratic character of the relation. In
the second simulation we hit on something interesting (see
fig. 7). The relation again seemed quadratic, but with non
negligible linear part (the data was well approximated with
ax2 + bx + c function with non-negligibleb, whereas the
approximation withax2 + c was quite poor). We claim to
have an explanation for this phenomenon. If we assume that
the relation is in fact quadratic with relevant linear part,then
consequently we argue that the equation 6 should be rewritten
as follows:

dr = −λ · c(r)dt + µ =
−λ

r
dt + µ (8)

for some non zero parameterµ. That suggests that the
speed of shrinking depends on curvature and some other
unknown parameter. A more thoughtful investigation of the
observed inconsistency lead us to conclusion that the fact
of not being exactly in the phase coexistence point might
have an impact on the result of the experiment. Note that
the second simulation was carried out in the approximate
coexistence of four pattern phases. The phase coexistence
point was extracted from linear equations of energy that are
valid in the zero temperature regime. From the considerations
in [11], we know that the phase coexistence point tends
to drift as temperature rises in such a manner that strong
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Fig. 6. Relation between number of iterations needed for circular spot of
the pattern’s negative to vanish in the ocean of a pattern andthe radius of
mentioned spot. The top figure shows also first and second derivatives. Note
that the second derivative (blue) is approximately constant what suggests that
the relationship is quadratic. The bottom figure shows two parabolic curves
(a ·x2 anda ·x2 + b ·x+c) obtained from the least squares method, which
perfectly approximate empirical data.

patterns are getting even stronger, while the weak patterns
are getting weaker4. In our simulation the surrounding pattern
was the strong one, while the one inside the spot was weaker.
Even though the bulk effects typical for strong domination
of one pattern were not observed, the dominating pattern
gained some extra force in consuming the spot of the weaker
one. Theµ parameter in the equation refers to that extra
force. Note that actually if our model was big enough (say
10000× 10000 neurons) we would observe bulk phenomena
for the same parameters (but in a respectively larger time
scale).

IV. CONCLUSIONS

The experiments we described in the paper provide nu-
merical evidence for conjecture, that Hopfield networks
with localised interactions under appropriate conditions(low
temperature and phase coexistence regime) can be analysed
in terms of mesoscopic theory well approximated by Kac po-
tentials. Even though our system is quite small and the range

4”stronger/weaker” as described in the introduction.
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Fig. 7. Plots similar to those from figure 6 obtained from the second
simulation. Note that the relation is still rather quadratic, but the ax2

parabola (blue) gives significantly worse results in approximating empirical
curve than theax2 + bx + c parabola, what implies relevance of the linear
part of the relation.

of interactions does not seem large at all, it clearly exhibits
phenomena like sharp phase interfaces and their dynamical
behaviour like shrinking by mean curvature. Some other
interesting phenomena occurred when the simulation ran in
a vicinity of the phase coexistence point, where movement
by curvature gains some extra force originating from the
broken symmetry between the patterns. On the other hand,
when one of the phases strictly dominates, the behaviour
proves to be completely different and reveals instant bulk
nature. In the scope of these results is seems reasonable to
make an assumption that some activations in brains could
evolve (with respect to topology of neural connections) in a
way described by mechanics of phase interfaces, which by
itself seems quite interesting, but beyond question requires
additional examination.

The mesoscopic approach has certain advantages over
the reductionist analysis, since neurodynamics of compound
neural systems can be enormously complex. The analysis
in the ”medium” scale lets us neglect all the (possibly
unimportant) details and extract the significant facts about the
investigated models, and provide an insight into interesting
phenomena that occur in bigger scales. Unfortunately, there



Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

is no general mesoscopic theory for neural networks, and
it seems that appropriate descriptions can only be done in
very special conditions like phase coexistence regime, in
systems that are close to stationary distribution. Despitethese
difficulties, proposed analysis can lead to completely new
models that would possibly obtain the same results a lot
faster in bigger scales.

There are however some unanswered questions that leave a
field for further research, that includes developing an efficient
algorithm for establishing the precise coordinates of the
phase coexistence point in non zero temperatures, as well as
generalising these results for networks with more complex
structure of connections, possibly small world networks etc.
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[11] F. PIȨKNIEWSKI , T. SCHREIBER, Phase diagrams in locally Hopfield
neural networks in presence of correlated patternsProc. IJCNN’05,
IEEE Press, 776-781.

[12] R. PEIERLS (1936) On Ising model of ferromagnetism.Proc. Cam-
bridge Phil. Soc 32 (1936, 477-481).

[13] E. PRESUTTI, From Statistical Mechanics towards Continuum Me-
chanics, Max-Planck Institute, Leipzig, 1999.

[14] YA . G. SINAI , Theory of Phase Transitions: Rigorous Results, Perga-
mon Press, 1982.

[15] M. ZAHRADNIK , An Alternate Version of Pirogov-Sinai Theory,
Communications in Mathematical Physics93 (1984) 559-581.


