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Abstract

In this paper we introduce a simple and mathematically tractable model of an asynchronous spiking neural network which to some
extent generalizes the concept of a Boltzmann machine. In our model we let the units contain a certain (possibly unbounded)
charge, which can be exchanged with other neurons under stochastic dynamics. The model admits a natural energy functional
determined by weights assigned to neuronal connections such that positive weights between two units favor agreement of their
states whereas negative weights favor disagreement. We analyze energy minima (ground states) of the presented model and the
graph of charge transfers between the units in the course of the dynamics where each edge is labelled with the count of unit charges
(spikes) it transmitted. We argue that for independent Gaussian weights in low enough temperature the large-scale behavior of the
system admits an accurate description in terms of a winner-take-all type dynamics which can be used for showing that the resulting
graph of charge transfers, referred to as the spike flow graph in the sequel, has scale-free properties with power law exponent γ = 2.
Whereas the considered neural network model may be perceived to some extent simplistic, its asymptotic description in terms of a
winner-take-all type dynamics and hence also the scale-free nature of the spike flow graph seem to be rather universal as suggested
both by a theoretical argument and by numerical evidence for various neuronal models. As establishing the presence of scale-free
self-organization for neural models, our results can also be regarded as one more justification for considering neural networks based
on scale-free graph architectures.
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1. Introduction

The concept of a scale-free network has gathered a lot
of attention in recent years providing a unified description
of a wide variety of complex network topologies display-
ing the evidence of strong structuring principles co-existent
with a considerable degree of randomness, see (Albert and
Barabási, 2002) for a comprehensive survey. A distinctive
feature of a scale-free network is that the degree distribution
of its nodes follows a power law, thus lacking a character-
istic scale in the language of statistical mechanics, whence
the name. The presence of such power laws has been ob-
served for a broad class of networks, prominent examples
including the World Wide Web (Albert et al., 1999), science
collaboration networks (Barabási et al., 2002), citation net-
works (Redner, 1998), ecological networks (Montoya and
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V., 2002), linguistic networks (i Cancho and Solé, 2001) as
well as cellular metabolic networks (Jeong et al., 2000) and
many other ones, see (Albert and Barabási, 2002). Many in-
stances of structuring principles resulting in scale-free net-
works have been proposed, with a prominent collection of
examples stemming from Barabási-Albert model (Barabási
and Albert, 1999; Albert and Barabási, 2002) and its vari-
ants modeling a variety of scale-free networks with different
power law exponents by exploiting the fundamental prop-
erties of growth and preferential attachment.

Recently, considerable interest has been attracted by
neural networks built on scale-free graphs and it turned
out that a hierarchical scale-free network architecture is in
many cases beneficial for efficiency of neuronal information
processing. A scale-free graph is relatively sparse, and so
the memory needed to store a neural network built on such
a graph, as well as computational effort required to provide
certain tasks are significantly reduced, see (Perotti et al.,
2006; Stauffer et al., 2003). In this context it is natural to
ask whether these advantages are reflected in some mech-
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anisms inherent to the usual recurrent neural network dy-
namics and resulting in emergence of power laws. In general
this does not seem to be necessarily the case for neural net-
works with simple processing units, for instance the neu-
ral network of C.elegans worm exhibits rather exponential
decay (Amaral et al., 2000; Koch and Laurent, 1999). Nu-
merical simulation based on the simple model by E. Izhike-
vich (Izhikevich, 2003) also did not reveal any scale-free
structure, as long as the processing units were single neu-
rons (Piekniewski, 2007). However, things are very differ-
ent when more complicated individual unit architecture is
assumed, in which case a single formal neuron can be inter-
preted as modeling a computational unit exhibiting some
non-trivial internal structure and memory, for instance a
group of biological or artificial neurons, see (Piekniewski,
2007) for related numerical study.

In this paper we propose a simple and tractable mathe-
matical model for such a situation. The units are allowed to
exchange stored charge under stochastic dynamics, which
is modeled as neuronal spikes being transmitted along the
edges of a fully connected network. Next, each edge is la-
belled with the count of spikes it transmitted, which results
in a graph with weighed edges, called the spike flow graph
in the sequel. Our theoretical results below, further con-
firmed by numeric evidence, state roughly speaking that
if we remove those neural connections which are only rel-
atively seldom used for spike transfers and we keep only
those often used and relevant to the dynamics, the result-
ing graph is with overwhelming probability scale free with
power law exponent γ = 2. The proof goes by showing that
in low enough temperatures the large-scale behavior of the
system admits an accurate description in terms of a par-
ticular winner-take-all type dynamics. Whereas the consid-
ered neural network model may be regarded to some extent
simplistic, its asymptotic description in terms of a winner-
take-all type dynamics and hence also the scale-free nature
of the spike flow graph seem to be rather universal, as sug-
gested by numeric evidence (Piekniewski, 2007).

We find the results of this paper important and inter-
esting as showing how scale-free structures spontaneously
emerge in neural information processing, arguably for
rather general models and with no special assumptions
aimed at stimulating this kind of self-organization. Apart
from their fundamental theoretical interest the results es-
tablished in this paper provide a further justification for
considering neural architectures based on small-world and
scale-free graphs, as has become popular in the literature
in recent years, see (Perotti et al., 2006; Stauffer et al.,
2003) and the references therein.

The remaining part of the paper is organized as follows.
In Section 2 below we introduce our basic theoretical model
sharing certain features with the standard Boltzmann ma-
chines (Aarts and Korst, 1989), yet admitting a richer state
space and assuming a rather different dynamics for indi-
vidual neurons which are simple spiking units here. Next,
in Section 3 we describe the behavior of this model in large
system size and long evolution time limit and argue it can be

represented via a kind of a winner-take-all dynamics whose
particular features enable us to establish explicit results on
the scale-free properties of the spike-flow graph in the fol-
lowing Section 4. In the further Section 5 we present nu-
meric evidence supporting our theoretical claims. Finally in
Section 6 we conclude the paper and conjecture that in spite
of the rather simple nature of our spiking network model
as designed to allow for exact calculations, the asymptotic
behavior of its large scale dynamics seems to be quite uni-
versal for a wide range of realistic spiking networks in that
a power law is present in their respective spike flow graphs,
even though the precise values of the corresponding expo-
nents may vary between different models. This universality
claim is also supported by some numeric evidence, as al-
ready previously reported in (Piekniewski and Schreiber,
2007) and (Piekniewski, 2007).

2. Basic model

In our research we sought for a model whose dynamics
would in its essence resemble that encountered in usual re-
current neural networks and, while being simple in terms
of its statistical mechanics, would exhibit a scale-free struc-
ture as a natural consequence of its construction. These
considerations resulted in the following spike flow model
originally introduced in (Piekniewski and Schreiber, 2007).
We consider a simple stochastic recurrent neural network
consisting of N neurons assuming states labeled by natural
numbers σi ∈ {0, 1, . . . ,Mi}, i = 1, . . . , N, interpreted as
neuronal charges below, and with natural or possibly infi-
nite numbers Mi standing for maximum admissible values
for the respective charges σi, i = 1, . . . , N. The network
is built on a complete graph in that there is a connection
between each pair of neurons σi, σj , i #= j, carrying a real-
valued weight wij ∈ R satisfying the usual symmetry con-
dition wij = wji, moreover wii := 0. The values of wij are
drawn independently from the standard Gaussian distribu-
tion N (0, 1) and are assumed to remain fixed in the course
of the network dynamics. A configuration σ̄ = (σi)i≤N of
the network is assigned its Hamiltonian given by

H(σ̄) :=
1
2

∑

i "=j

wij |σi − σj | (1)

if 0 ≤ σi ≤ Mi, i = 1, . . . , N, and H(σ̄) = +∞ otherwise.
The dynamics of the network is defined as follows: at each
step we randomly choose a pair of neurons (σi, σj), i #= j,
and denote by σ̄∗ the network configuration resulting from
the original configuration σ̄ by decreasing σi by one and
increasing σj by one, that is to say by letting a unit charge
transfer from σi to σj , whenever σi > 0 and σj < Mj .
Next, if H(σ̄∗) ≤ H(σ̄) we accept σ̄∗ as the new configu-
ration of the network whereas if H(σ̄∗) > H(σ̄) we accept
the new configuration σ̄∗ with probability exp(−β[H(σ̄∗)−
H(σ̄)]), β > 0, and reject it keeping the original configura-
tion σ̄ otherwise, with β > 0 standing for an extra parame-
ter of the dynamics, in the sequel referred to as the inverse
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temperature conforming to the usual language of statisti-
cal mechanics and assumed fixed and large (low tempera-
ture) throughout. Observe that the sum

∑
i σi of neuronal

charges is preserved by the dynamics and that, in the course
of dynamics with some initial configuration σ̄0, any other
σ̄ with

∑
i σ0

i =
∑

i σi is eventually reached with positive
(although possibly very small) probability. Consequently,
upon standard verification of the usual detailed balance
conditions, we readily see that the collection of stationary
states of the above dynamics are precisely the distributions

Pn(σ̄) =






exp(−βH(σ̄))(∑
σ̄′,

∑
i
σ′

i=n exp(−βH(σ̄′))
) , if

∑

i

σi = n,

0, otherwise
(2)

and their convex combinations. In particular, our model
bears some resemblance to the usual stochastic Boltzmann
machines (Aarts and Korst, 1989), with the weights wij in-
dicating the extent to which the system favors the agree-
ment (for positive wij) or disagreement (for negative wij) of
the neuronal states σi and σj . There are evident differences
though, one of them being the possibly unbounded state
space whenever Mi = ∞, the other one that precisely two
neurons are affected in each update with clearly determines
the source and destination of the charge flow. Whereas the
latter difference does not lead far away from the concept
of a Boltzmann machine, as yielding a rather similar form
of the stationary distribution, the former one is crucial –
indeed, if Mi is a large number, the behavior of the cor-
responding i-th unit becomes quite complex and arguably
it can be regarded as exhibiting some kind of memory of
charge transfers undergone in the course of the dynamics.
In this paper we shall concentrate on the cases where Mi’s
will be all infinite or of order only slightly smaller than the
overall charge stored in the system, thus conforming to our
leading assumption of a complex neuronal structure. We
will prove below that in this set-up the network exhibits
natural scale-free features. On the other extreme one can
impose all Mi’s very small, which makes our model resem-
ble classical Bolztmann machines. Taking all Mi ≡ 1 and
i.i.d. Gaussian weights yields a network which can be re-
garded as a somewhat modified version of the well-known
Sherrington-Kirkpatrick spin glass model, see Chapter 2 in
(Talagrand, 2003). In general, our model interpolates be-
tween both extremes and can exhibit a wide range of behav-
iors depending on the choice of the Mi’s. For the network
dynamics running during a period [0, T ] we are now in a po-
sition to define the spike flow graph to be a directed graph
with vertices corresponding to the neurons σi, i = 1, . . . , N
and whose edges carry numbers (edge multiplicities) Fi→j

indicating how many times in the course of the dynamics
the charge flow occurred from σi to σj . If β is large, which
is always going to be assumed in this paper, after a long
enough simulation run the system freezes in some ground
state whereupon any further charge flow becomes very rare
and consequently the numbers Fi→j also freeze undergoing

virtually no further changes. The in-degree of a neuron σi is
now defined as din(j) :=

∑
i Fi→j . The main question con-

sidered in this paper is whether the so-defined spike flow
graph is scale-free in that its in-degree distribution follows
a power law, that is to say P(din(i) ≈ x) ∼ cinx−γin for
a randomly picked node i. Choosing Mi’s large enough we
shall establish a positive answer to this question. It should
be noted at this point, as will become clear from our dis-
cussion below, that the asymptotic behavior of the corre-
sponding out-degree distribution is the same as that of the
in-degrees.

3. Winner-take-all dynamics and ground states

For the scope of this research we will limit ourselves to
very low temperature regime, which amounts to assuming
that the overwhelming majority of network updates are just
jumps towards lower energy configurations, as in the cor-
responding zero-temperature (infinite β) approximation.

We assume first that all Mi’s are infinite and thus no
upper bounds are imposed on individual charges. In this
extreme set-up we argue that with overwhelming proba-
bility with respect to the choice of the weights wij , the
unique ground state (lowest energy state) of the network,
and hence also the unique attractor of its dynamics, is a
configuration in which all charge present in the system is
stored in a single best unit with all the remaining units de-
void of charge. To see this, for each unit σi consider the
support Si it gets from the remaining units, given by

Si := −
∑

j "=i

wij .

Clearly, all the Si’s so defined are Gaussian random vari-
ables N (0, N − 1) and are virtually independent – indeed,
Si and Sj for i #= j share just one summand wij whereas
the remaining ones are independent. With S:k standing for
the k-th largest value among Si’s, it is known by extreme
value theory, see e.g. Section 1.2 in (Talagrand, 2003), that
the order statistics S:k are well approximated by

S:k ≈
√

2N log2 N

(
√

log 2 +
ξk√

log2 N

)
(3)

where the sequence ξ1 > ξ2 > . . . is chosen according to a
Poisson point process with intensity 1

π exp(−2t
√

log 2), t ∈
R, in particular the p-th ξi above 0 is of order log p and S:k’s
are of order

√
N log N which is much higher than the order

of the typical Si being
√

N. To proceed, assume we run our
spike-flow dynamics for some long enough amount of time
to get close to equilibrium, whereupon we consider a small
number o(N) of neurons which store the highest charge,
considerably higher than the remaining units, and we call
these elite neurons while granting the term bulk neurons
to the remaining units in the system. Since the number of
elite neurons is a negligible fraction of N, the formula (1)
becomes then
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H(σ̄) ≈ −
∑

i∈elite

σiSi +
1
2

∑

j,l∈bulk

wjl|σj − σl|. (4)

Thus, whenever in the course of the network dynamics a
charge transfer is proposed from a bulk neuron σj to an
elite neuron σi, the resulting energy change is seen to be
well approximated by −Si plus a term due to the inter-
action between σj and other bulk neurons. In general, we
have no control of this term, yet if σi is one of the neurons
with the highest support as in (3), this offending term of
order at most

√
N is very likely to be negligible compared

to −Si which is of order
√

N log N, thus making the en-
ergy change strongly negative and the proposed transfer ex-
tremely likely to be accepted. Clearly, the inverse transfer
becomes then almost impossible. Consequently, whenever
a neuron with a very high support enters the elite, it virtu-
ally never leaves it; moreover it continuously drains charge
from the bulk losing it only to other elite members if at all
(see Figure 1 for numerical support of these claims). Fur-
thermore, should a neuron with a small support value hap-
pen to enter the elite at the early stages of the dynamics, it
will soon leave it having its charge drained by other higher
supported neurons. Thus, after running our dynamics long
enough we end up with a picture where the elite consists of
neurons with the highest support. Although the elite neu-
rons do struggle for charge between themselves, they co-
operate in draining it from the bulk. Therefore eventually
almost no charge will be present in the bulk and hence the
Hamiltonian will admit a particularly simple approxima-
tion

H(σ̄) ≈ −
∑

i∈elite

σiSi (5)

and all further updates in the system will only happen due
to charge transfers within the elite. Note now that the in-
teractions between elite neurons as determined by their
connectivities (weights) are of order o(

√
N) since the car-

dinality of the elite is o(N) whereas the differences between
the highest consecutive support values are of higher order
Θ(
√

N) in view of (3) which makes the former negligible
compared to the latter. Thus, the dynamics between the
elite neurons takes eventually a particularly simple form:
a pair of elite neurons is chosen by random and if the one
with smaller support attempts to transfer a unit charge to
the one with higher support, the attempt is accepted, oth-
erwise it is rejected. The only ground state of the system
is then obtained by putting all charge into the unit of the
highest support. It should be noted that at intermediate
stages of the dynamics it may happen that elite members
show up with charges whose order is inverse to that deter-
mined by the supports rather than consistent with it. This
is an artifact due to the fact that if we admitted negative
charges here, a twofold sign-flip symmetry would be present
in the system in full analogy to usual networks with no ex-
ternal field and such inverse ordering would compete with
the standard one on equal rights. This is not the case here
though because negative charges are not allowed and there-

fore such inversely ordered structures are unstable and do
not persist in the course of the dynamics.

In view of the above discussion, the highest in-degrees of
the spike-flow graph are observed in elite units enjoying the
highest support from the system, and the corresponding
charge flows Fi→j are mainly due to the internal charge
transfers within the elite. Thus, we have shown that the
asymptotic behavior of our network model is accurately
described by the following winner-take-all model:
– the system consists of K neurons ui, i = 1, . . . ,K, repre-

senting the elite units and ordered according to decreas-
ing supports,

– n units of charge are sequentially introduced into the
system, each time according to the following dynamics
· first, a unit charge is transferred to a randomly chosen

neuron uk0 , k0 ≤ K,
· thereupon it starts jumping to further neurons ukl ,

where kl+1 < kl is randomly chosen in {1, . . . , kl − 1},
· eventually the unit charge reaches u1 and gets frozen

there.
– the in-degrees of the elite neurons in the original net-

work are approximated by the numbers Di indicating
how many charge units have visited ui on their way to u1.

In other words, in this model the charge transfers always
occur from a neuron with smaller support to a randomly
chosen better supported one, whence the term winner-take-
all dynamics. Curiously enough, the winner-take-model is
easily seen to exhibit a consistency property – if we take
some K ′ < K and observe the behavior of the model re-
stricted to K ′ neurons of highest support only, this exactly
coincides with what we get if we run our original dynamics
on the restricted set {u1, . . . , uK′} of units. Consequently,
from the viewpoint of our asymptotic analysis of the in-
degree sequence D1, D2, . . . the precise value of K is irrel-
evant as long as K + N but K →∞ as N →∞.

Now, repeating the argument presented in this section for
Mi’s large but finite, we end up with the following modifi-
cation of the above winner-take-all dynamics. Assume first
that the elite neurons of the highest support are not yet
saturated, that is to say their capacity has not yet been
reached. In such a case the dynamics follows exactly as
previously. Once a certain elite neuron gets saturated, it
becomes inactive, since it cannot accept any more incom-
ing charge. If this happens to be a neuron of high support,
then it is very unlikely to get unblocked prior than possibly
at the very final stages of the dynamics, since with over-
whelming probability only units of higher support drain any
charge from the considered unit, and their number is negli-
gible compared to that of lower supported neurons pump-
ing their charges upwards the support hierarchy. Therefore,
should a neuron of a very high support get saturated, it
will most likely stay inactive for the most of the simulation
thereafter, and it could be removed from any additional
consideration as playing no relevant role anymore. Further
evolution of the so reduced system follows the same pat-
tern: at any stage the winner-take-all dynamics is present
among the set of best unsaturated neurons. Consequently,
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in case Mi’s are of the same order as total charge present
in the system, the deviation from the unbounded version
of the dynamics is negligible, which can be easily noted in
simulations. If Mi’s are much smaller though, the satura-
tion factor becomes significant and the winner-take-all dy-
namics breaks down. Some models exhibiting this property
will also be discussed in the next Section 4.

4. Power law for spike-flow in-degrees

We are now in a position to exactly characterize the
asymptotic behavior of the in-degree sequence Di, i ≥ 1.
Again, we begin with the extreme set-up Mi ≡ ∞ first,
passing to more general choice of charge constraints there-
after. It is worth noting that asymptotically the out-degree
sequence behaves in exactly the same way as the in-degrees
since for most units save the highest support neuron and
very low support neurons their in- and out-degrees are al-
most equal. Some insignificant disagreements may occur in
finite numerical simulations, where all units start with some
fixed amount of charge and proceed according the dynam-
ics. In such case the out-degree sequence is disturbed by the
single (therefore insignificant) unit that eventually receives
and keeps the whole charge present in the system, whereas
the in-degree sequence is disturbed within some range of
low degrees (units which received far less charge than they
gave away to others). We can avoid these fluctuations by
only looking at the tail of the distribution (in practice, say,
degrees higher than 5-10 times the initial charge per neu-
ron) or by simulating larger systems.

To proceed, consider a single charge unit introduced into
the system and write kl for the number of neuron ukl it vis-
its after its l-th jump, l = 0, 1, . . . . Recall from Section 3
that k0 is drawn uniformly from {1, . . . ,K}. Further, con-
sider also a sequence X0, X1, X2, . . . of continuous (0, 1)-
valued random variables such that X0 is uniform in (0, 1)
and Xl+1 is chosen uniformly from (0, Xl) for all l ≥ 0.
Then it is easily seen that for K large enough we can safely
approximate in law

kl = .KXl/
with .·/ standing for the upper integer value of its argu-
ment. In particular, defining πi, i = 1, . . . to be the proba-
bility that the charge unit visits ui, we have πi = P(∃lkl =
i) and hence for K large enough we get the approximation

πi ≈ E|{l, Xl ∈ [(i− 1)/K, i/K]}|, i > 1 (6)

and, clearly, π1 = 1. The values of in-degrees Di are then
binomially distributed b(πi, n) with parameters πi and n,
the latter standing for the number of charge units present
in the system.

To proceed with our asymptotic analysis we observe that
Xl’s form a so-called record sequence in the sense of classical
extreme-value theory, see Chapter 4 in (Resnick, 1987).
Consequently, by Section 4.1 ibidem, the sequence Tl :=
− log Xl is simply a unit intensity homogeneous Poisson
point process in R+. Thus, using (6) we get

πi ≈ E|{l, Tl ∈ [− log(i/K),− log((i− 1)/K)]}| ≈ 1/i.

Hence, for large values of n we have by the law of large
numbers

Di ≈ n/i.

It means that, for large k,

|{i, Di > k}| ≈ n/k

or,
|{i, Di ≈ k}| ≈ n/k2.

We have thus proven the main result of this paper.
Theorem 1 For the basic spike-flow model with Mi ≡ ∞
the resulting spike-flow graph is scale-free with exponent γ =
2.

In analogy to this argument assume now that Mi’s
instead of being infinite are finite, indepedent from the
weights wij , independent among themselves, and drawn
from a power-law distribution

P(Mi > k) ≈ ck−α (7)

for some α > 0. In such a set-up, if c in (7) is not very large,
a non-negligible fraction of units will get saturated in the
course of the dynamics and therefore would stop accepting
any more incoming charge at some stage of the network
evolution. This may considerably alter the behavior char-
acterized by Theorem 1. In fact, it is natural to expect that
three groups of units will emerge:
– Units of highest support, elite of the elite, which can

be sure to reach their capacities. By the independence
of Mi’s from the weights wij ’s and hence also from the
supports Si’s, when choosing at random among such
units the probability of exceeding in-degree k is given
by the product of the probability of the chosen unit ex-
ceeding the in-degree k in the unconstrained dynamics
(Mi ≡ +∞) times the probability of its capacity being
higher than k. Consequently, in view of Theorem 1 the
in-degrees of the highest support units should follow a
power law with exponent α + γ = α + 2.

– Units of intermediate supports, lower elite, still falling
into the elite and reaching rather high in-degrees, but not
exceeding or even reaching their capacities. Such units do
not feel the constraints Mi’s and constitute a portion of
the network where in-degrees should follow a power law
with exponent γ = 2 as in the unconstrained dynamics.

– Units of rather high but not highest supports, medium
elite, for which the capacity and in-degrees they would
reach under the unconstrained dynamics are of a compa-
rable order. Their behavior should interpolate between
the above two extremes.

These observations would suggest that two principal
regimes should be observable for the in-degree distribu-
tion of such networks: highest in-degrees should follow a
power law with exponent α + 2 whereas the lower elite
in-degrees should behave as in Theorem 1 stating power
law with exponent 2. The region separating these regimes
should interpolate between these two behaviors, possibly
exhibiting very complicated properties due to the presence
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Fig. 1. Typical evolution of the charge stored in seven units of the highest support. The above figure is a result of a simulation run of 3000
units (left) and 4000 units (right). Note that while in the beginning of the simulation all seven elite members compete for charge, by the end
the single best unit gets everything.
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Fig. 2. Percentage of charge jumps leading to a unit of higher support (sampled every 100 jumps) in a simulation run of 3000 units. The
plot on the left is scaled linearly, the one on the right is semi-log. Note that after initial unstable phase (about 104 steps), the plot increases
steadily until about 2 ∗ 106 steps where again some fluctuations occur. These fluctuations are caused by increased significance of stochastic
term (tiny energy modifications leaving room for thermal fluctuations). It is worth noting that by that time jumps are already infrequent
while the state is near the energy optimum. By the step 2 ∗ 107 the system freezes completely in the ground state.

to traffic jams at medium elite units, which are no more
negligible unlike in case of lower elite units, but which only
temporarily disable the blocked units and may be eventu-
ally discharged in contrast to the case of high elite units.
We cannot claim to have confirmed these conjectures by
numerical results though because the realistic system sizes
we were able to reach in our simulation were too small to
ensure statistically significant collection of units in each of
the afore-mentioned regimes.

5. Numeric results

The above considerations were accompanied by a numer-
ical simulation implemented in Matlab, letting us continu-
ously verify our assumptions, and giving valuable hints for
further investigation. The simulations were usually carried
out for systems of about 3000-6000 neurons with the basic
dynamics (as described in Section 2) – the only speed-up
was that the neuron to pass a unit charge to some other
one was chosen randomly only among those containing any
charge at all. The total energy computation required a
quadratic time in the number of neurons, but during the
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Fig. 3. Cumulative distribution function (CDF) of the out-degree in the spike flow graph (in-degree yields a similar plot) of 3000 units (left)
and 4000 units (right). Presented CDF slopes correspond to the power law exponent γ = 2 + /− 0.03. The slopes were approximated by the
least squares method.
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Fig. 4. The charge stored in 2% units of highest support (left) and number of units storing 98% of total charge. These figures give strong
support to the idea of dividing the units into elite and bulk, and treating these groups separately.

simulation we only needed to compute local energy updates,
which took only linear time. Despite of these straightfor-
ward enhancements, larger systems (≈ 10000 units) be-
came problematic due to memory consumption and did not
give any qualitatively better results. In the future we plan to
simulate much bigger systems based on the simplified ver-
sion of dynamics (the winner-take-all asymptotic version)
that would allow us to avoid the need for explicit connec-
tivity matrix, in order to confirm the intuitions described
in final paragraphs of Section 4. In the course of the present
simulation β (the inverse temperature) was fixed at β = 10
which, since the average energy updates in the simulation
were of order≈ 1 per step, places us in the low temperature
regime. The temperature only became more significant by
the end of the simulations when the energy modifications

were of much smaller order leaving place for thermal fluc-
tuations, but by that time the system usually had already
converged to the expected ”winner-take-all” configuration
(Figure 2 gives some insight into temperature based fluctu-
ations). The results of the simulations confirmed our the-
oretical predictions about the ”winner-take-all” dynamics
(see Figures 1,2,4), as well as the scale-free properties of
the spike flow graph (Figure 3). The number of steps was 10
times the number of neurons squared, which was about the
number of steps required for full convergence to the ground
state. Rarely the system converged to a state in which two
units of highest support shared the whole charge. This is
possible, whenever the weight between the two compet-
ing units is comparable to the difference of their supports,
thus forming a local energy minimum (pumping charge to
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the better unit requires temporary energy increase). Since
the experimental system is finite such unusual configura-
tions may appear with some small probability. Evidently
as the system size increases, such energy minima become
less probable (asymptotically negligible).

6. Conclusions

The model introduced in Section 2 above is sufficiently
simple to allow for theoretical approach, yet its dynamics is
rich enough to clearly exhibit scale-free properties. More-
over, the argument in the crucial Section 3 providing a de-
scription of the large-size behavior of our model in terms of
a winner-take-all dynamics, seems to be rather robust and
independent of many specific features of the model, which
makes us believe it is universal for a broad class of similar
models with not necessarily Gaussian and not necessarily
i.i.d. weights, and even admitting possible modifications to
the dynamics etc. These and related issues are a subject of
our present research in progress.

A further important issue, already signalled in the in-
troduction above, is that our results are by no means con-
tradictory to the lack of scale-free properties reported in
certain real-world neural networks, e.g. negative results for
C.elegans worm nervous system, whose connectivity reveals
rather exponential decay – see (Amaral et al., 2000; Koch
and Laurent, 1999). The point is that we only expect scale-
free properties to arise in presence of sufficiently compli-
cated information processing units, corresponding for in-
stance to neuronal groups rather than single neurons, and
exhibiting a kind of (collective) state memory. This is of-
ten not the case for individual biological neurons or their
models, where only the presence of a short refractory pe-
riod carries some information about the history of previous
excitations which cannot be stored for later use. Things
can be different however if a recurrent group of neurons
is taken into account as a single computational unit. In
this case the rich dynamics inside the group can develop
a kind of a collective state memory we have in mind. In
recent paper (Piekniewski, 2007) we show a numerical ex-
periment based on the Eugene Izhikewich simple spiking
neuron model (Izhikevich, 2003) that supports the above
claims. Shortly, the experiment shows that by substituting
small neuronal groups in place of single neurons, the result-
ing activity graph (analogous to the spike-flow graph dis-
cussed above) becomes a scale-free network, even for fairly
small neuronal groups (less than 20 neurons per group).
The questions whether such structures can emerge among
more biologically plausible, spontaneously created groups
of synchronized neurons is currently a subject of our ongo-
ing research. Other more complex variants of the spike flow
model are also being investigated.
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