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Introduction

@ Recall that bursting in the neuronal context means that the
neuron responds to stimuli with a series of spikes instead of
just one.

@ In more general context a burster is a dynamical system that
autonomously alternates between two dynamical regimes. So
far we've seen point-cycle bursters, but we may also have
cycle-cycle, cycle torus or chaotic bursters.

@ When the dynamical system is composed of two parts which
operate on different timescale, the burster is said to be of the
fast-slow type.

@ Fast-slow bursters can be dissected, that is fast and slow part
can be analyzed to some extent separately.

@ Other bursters are of the hedgehog type, therefore there is a
periodic (quasiperiodic, chotic) orbit that passes through
different dynamical regimes.
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Types of hysteresis loop

Types of hysteresis loop

@ Last time we've seen, that a "neuronal” fast slow burster can
driven by the hysteresis loop or the slow wave.

@ The hysteresis loop requires bistability, and only two of the
plane neuronal models we've seen exhibits bistability -
fold /homoclinic and Hopf/Fold Cycle. We noted that other
bursters can be achieved only vie the slow wave (at least 2
dimensional slow system)

@ There also another way - we can introduce an additional
"down" state and therefore achieve bistability and hysteresis
loop bursting.
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Types of hysteresis loop

Circle/Circle Bursting

Figure: Circle-circle bursting via a slow wave and via a hysteresis loop with
additional stable "down" state.
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Types of hysteresis loop

Circle/Circle Bursting

Figure: Circle-circle bursting via a slow wave and via a hysteresis loop with
additional stable "down" state.
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Types of hysteresis loop

Fold

(saddle-node)
o bifurcation
(saddle-node)
bifurcation
Fold
~ (saddle-node)
bifurcation

e > e
‘Andronov-Hop!
bifurcation

Subcritical
Andronov-Hopf
bifurcation

Fold
(saddlenode)

bifurcation ~<
Suberitical
Andronov-Hopf
bifurcation
Suberitcal ~
Andronov-Hopf S~
bifurcation .

Figure: Different point-point hysteresis loops.
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Types of hysteresis loop
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Figure: Fold-fold hysteresis loop.
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Types of hysteresis loop
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Types of hysteresis loop
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Figure: Fold-subHopf hysteresis loop.
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Types of hysteresis loop
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Types of hysteresis loop

@ There are only four point-point hysteresis loops, but there can
be more loops including cycles

e We may have for example Circle/Fold cycle burster via
subHopf/fold cycle loop:

The "down" rest state looses stability via saddle node on
invariant circle bifurcation and begins to spike

The limit cycle looses stability via fold cycle bifurcation. The
system jumps to the "upper” rest state. Almost immediately
the stable limit cycle reappears via another fold cycle
bifurcation.

The large limit cycle disappears via saddle node on invariant
circle bifurcation.

The upper rest state looses stability via Subcritical
Andronov-Hopf bifurcation, the system jumps to the "down”
state.

The process repeats...
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Types of hysteresis loop
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Figure: Circle/Fold Cycle bursting via subHopf/fold cycle hysteresis loop.
Morris-Lecar model with parameters as in the next slide.
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Types of hysteresis loop

Morris-Lecar model with slow system (u)

dv
5 = u—alV—E)—ekw(V — Ek) — gcameo (V) (V — Eca)

dw
= ANV (V) — W)
% =u(0.1+ V)

M (V) = % <1+tanh (VV2V1>) Woo (V) = % <1+tanh (VV4V3>)

1 V-V
AlV) = gcosh ( 7 )
Vi = —-0.01, V, =0.15, V3 =0.1, V4, =0.16, Vs = —0.5, E =
—0.5, Ex = —0.7, Ec, =1, g = 0.5, gk =2, gca = 1.36, 1 = 0.003
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Types of hysteresis loop

Reassuming we have

16 types of fast-slow bursters of neuronal type.

Each of them can be driven by the slow wave.

All of them can be driven by a hysteresis loop with additional
"down" state

Some of them can be driven by a hysteresis loop which
"reuses” some of the bifurcations that switch on/off bursting

(in particular two that we've seen are bistable by default and
can drive the hysteresis loop on their own)

This gives about 100 possible dynamical regimes...
unfortunately this is not the end.
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Burster classification

Burster classification

@ So far we've seen point-cycle bursters, but there are other
types possible.

@ A strange kind of bursting may appear even when there is no
cycle attractor at all, in such a case the "spikes” are simply
damped oscillations.

e We may also assume there is a large amplitude cycle (spiking
state) and a small amplitude cycle (rest state). This gives
additional bursters.

@ Since bursters work in 3d, the spiking state could be a torus,
while the rest state could just be a slow transition near the
cycle ruins.

e Finally there can be chaotic bursters...
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Figure: All planar bursters (including cycle-cycle).
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Burster classification
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Figure: All (?) cycle-cycle and point-cycle 3d bursters .
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Figure: All (?) cycle-cycle, point-cycle and cycle/point-torus 3d bursters .
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Point-cycle

Burster classification

Figure: All (?) fast-slow bursters .
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Burster classification

The system
v _ v,
dt 3
d
dl: =¢e(atv—Sw))
du
— =0.01v;
dt Y
where b
Sw)=——=
l+ea
and e =1, a =077+ 23% b =165+u, —0.15+ u,d =0.1

exhibits cycle-cycle bursting, with low amplitude cycle being the
"resting"” state.
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Figure: Homoclinic/Hopf cycle-cycle burster
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Figure: Cycle-cycle bursting
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Burster classification
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Figure: Cycle-cycle bursting
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Figure: Point-point bursting
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Burster classification

The system
v _ v
dt 3
d
d—V::e(aw—S(w))
dc
— =10.01
ar 0.01v
where b
Sw) = ——=
l+ed

and ¢ = 0.5, a=1.3, b =23, d = 0.1 exhibits a peculiar type of
bursting, in which there is not cycle attractor at alll The "spikes”
in the active phase are simply damped oscillations around a stable
focus, though the rate of convergence to the focus is very slow.

Filip Piekniewski, NCU Torun, Poland Mathematical Foundations of Neuroscience - Lecture 11 24/55



Burster classification

Figure: Point-point bursting
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Burster classification Point—pbint
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Figure: Point-point bursting
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Burster classification

Figure: Point-point bursting
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Burster classification Point—pbint
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Figure: Point-point bursting
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Burster classification
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Figure: Point-point bursting
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Burster classification
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Figure: Point-point bursting
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Burster classification
Cycle/torus
Chotic

Cycle/Torus

@ We we now consider a burster defined on the invariant torus.
The burster is 3d, but may be difficult to define in terms of
the fast-slow form.

@ Assume the torus is close to the fold limit cycle on homoclinic
torus bifurcation. In this case, the trajectories are periodic (or
quasiperiodic) on the torus.

@ However when they pass near the cycle ruins, they
significantly slow down. In this case the passage through the
external part of the torus corresponds to "active” part of
bursting, and the passage near the internal part of the torus
corresponds to "quiet” part of the burst.

@ The waveform of bursting depends significantly on the
position of the limit cycle ruins with respect to the torus.
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Burster classification

Cycle/torus
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Figure: Quasiperiodic torus bursting
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Burster classification
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Figure: Quasiperiodic torus bursting
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Burster classification 1t-point
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Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Burster classification

Chotic
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Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Burster classification oint-point
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Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Burster classification

Chotic
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Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Burster classification

Chotic
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Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Burster classification

Chotic

Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Burster classification

Chotic
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Figure: Various types of quasiperiodic bursting, depending on the locus of
cycle ruins in relation to the torus.
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Burster classification

Chotic

Figure: Trajectories on a torus may become very complex for non autonomous
systems...
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Burster classification

Chotic
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Figure: Trajectories on a torus may become very complex for non autonomous
systems...
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The famous Lorenz Attractor
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For parameters p = 28,0 = 10,3 = 8/3 is actually a chaotic

burster!
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Burster classification
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Burster classification

Figure: Chaotic bursting (Lorenz Attractor).
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Burster classification

Chotic

But chaotic bursting does not have to look so "chaotic”. In fact
chaotic bursting may look very regular, though still the system may
be "chaotic”. The system:

dx x3
VS AR B
™ X 3 + R(u)

du 1 u
= 01— (1—-10/)u—=
& 0 <1—|—e—5x( 0i)u 2)

with | = 0.75 exhibits chaotic behavior near saddle homoclinic orbit
bifurcation.
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Figure: Chaotic bursting near saddle-focus homoclinic bifurcation.
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Burster classification

Figure: Chaotic bursting near saddle-focus homoclinic bifurcation.
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Burster classification

Figure: Chaotic bursting near saddle-focus homoclinic bifurcation.

Filip Piekniewski, NCU Torun, Poland Mathematical Foundations of Neuroscience - Lecture 11 34/55



Some neuronal bursters
Synchronization of bursters

neuronal bursters

o Lets get back to more "neuronal” bursters.

@ Conductance based models impose severe conditions on the
system, yet many neuronal bursters are possible.

@ It is also usual that simple codimension one bifurcations in low
dimensional systems are more probable to find in nature than
complex high dimensional, high codimension examples

@ We know there are 16 types of planar fast-slow bursters of
"neuronal” type. Some of these bursters were observed in
neuronal recordings, some remain "theoretical”.
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Figure: Fold-Homoclinic bursting diagram. The slow system may be one
dimensional due to hysteresis loop..
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Fold/Homoclinic burster - INa,pr + Ik + lkovy model

One can add a slow potassium current to the Iy, p + Ik model:

dv
Cmg =1—gL(V—EL) — gnaMeo(V)(V — Ena) — gn(V — Ex)+
- ngIownslow( vV — EKsIow)
I (el V) = )/l V)
dnSOW
Tlt = (nooslow(v) - nslow)/Tslow(V)

With Cy =1, E; = —80, T,(V) = 0.152 g, = 8, gns = 20, gx = 9,

BKslow = 5, ENa = 60, EK = —90, EKsIow = —90, Tslow(\/) = 20,
Mo (V) = ﬁ Noo(V) = ﬁ Nooslow (V) = ﬁ
1+e 15 l1+e 5 l1+e 5
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Fold-homoclinic
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Figure: Fold-homoclinic burster via a hysteresis loop.
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Some neuronal bursters

Y% f bursters

Canonical model of FoId/HombcIinic bursting

@ Any fold/homoclinic burster via a continuous change of
variables can be transformed into:

dv

E:I+V2—U
du_
a M

with after spike reseting v <~ 1, u < u + d where /, d and
n << 1 are parameters.

@ Note how this model resembles the simple spiking model by
Izhikevich. Therefore the bursting exhibited by the simple
model is of the Fold/Homoclinic type.
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Figure: Saddle-node homoclinic orbit bifurcation diagram and corresponding
canonical models with reset value.
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Figure: Fold/Fold Cycle bursting diagram.
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Some neuronal bursters ycle
Sy of bursters

Fold/Fold Cycle burster - Wilson-Cowan model

The Wilson-Cowan oscillator with a slow system (u) defined as:

d
d% = —x + S((—4.76 + u) + ax — by)
dy
P + S((—9.7+0.3u) + cx — dy)
du
— =0.1(0.5 —
” 0.1(0.5 — x)
where
S(x) = ;
C l4ex
and a = 10, b = 10, ¢ = 10, d = —2 exhibits Fold/Fold Cycle
bursting
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Figure: Fold/fold cycle burster in Wilson-Covan oscillator.
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Some neuronal bursters

Y% mhr nizatiol

Clrcle/ClrcIe burster - Inap + Ik + sIow wave model

dVv
Con— =1—gL(V—EL) — gnamso(V)(V — Ena) — gkn(V — Ex)+

— 8K slownslow( V — Ek slow) — 8Na slowmslow( V — Ena slow)

% = (Noo(V) — n)/T4(V)
dr:ItOW = (Noosiow (V') — Nstow ) / Tk slow (V')

dms ow
—slow = (mooslow( V) - mslow)/TNa slow( V)

dt
With | =5, Cn =1, E, = —80, To(V) = 1, g = 8, gy = 20,

9' gK S|OW — 201 ENa — 60, EK = *90, EK S|OW = 790v

gk =

ENa slow — 60, 8Na slow = 3, TK sIow(V) = 20, TNa sIow(V) = 50,

Moo (V) = ﬁr Neo(V) = ﬁr Nooslow (V) = %v
l1+e 15 1+e 5 1+e 5

Mogsiow (V) = ——a—v
1 5
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Figure: Circle-Circle bursting diagram.
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Figure: Circle-circle burster via a slow wave.
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Note that the slow system:

d Nsjow

d;:fo = (Nooslow (V) — nslow)/TK slow( V)

d Msjow

Ttl = (Moostow (V') — Msiow)/TNa slow (V)

is uncoupled, so it cannot oscillate when V = const. So the slow
wave is only possible when voltage changes! The slow system alone
is worthless!
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Figure: Subcritical Andronov-Fold Cycle bursting diagram. The slow system
may be one dimensional due to hysteresis loop.
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SubHopf/FoId Cycle burster - INap + Ik + Ikovy model

The Inap + Ik model:

dVv
Cn— =1—g(V—EL) — gname(V)(V — Ena) — gkn(V — Ex)+

dt
- ngIownslow( vV — EKS|OW)
dn
o = (el V) = m)/Ta(V)
dns ow
dlt = (nooslow( V) - nslow)/Tslow( V)

With | =55, C,, =1, E; =78, Tn(\/) =1g =1 gna=4, 8k =
4, 8Kslow = 15, ENa = 60, Ex = —90, EKsIow = —90, Tslow(v) =

60, moo(v) = % noo(V) = % nooslow(v) = ﬁ
1 l1+e 5 1 5

+e
exhibits Subcrltlcal Andronov Hopf/Fold Cycle bursting
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Figure: SubHopf - Fold Cycle burster via the hysteresis loop.
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Synchronization of bursters

There are at least four ways in which two bursters may synchronize
@ Spike (de)synchronization
@ Burst (de)synchronization
@ Burst and spike synchronization
@ Burst synchronization, spike desynchronization

Depending on a type of bursters various synchrony regimes can be
obtained by excitatory/inhibitory coupling.
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Figure: Uncoupled fold/homoclinic burster (first pic) and coupled via
excitatory connection (second pic). Excitatory connection causes burst
synchronization. Spikes are synchronized at the beginning of the burst, but

then desynchronize.
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Figure: Uncoupled fold/homoclinic burster (first pic) and coupled via
excitatory connection (second pic). Excitatory connection causes burst
synchronization. Spikes are synchronized at the beginning of the burst, but

then desynchronize.
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Synchronization of bursters
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Figure: Uncoupled and synchronized fold/homoclinic burster (first pic) and
coupled via inhibitory connection (second pic). Inhibitory connection causes

burst desynchronization.
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Figure: Uncoupled and synchronized fold/homoclinic burster (first pic) and
coupled via inhibitory connection (second pic). Inhibitory connection causes

burst desynchronization.
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Figure: Uncoupled SubHopf/Fold Cycle burster (first pic), coupled via

excitatory and inhibitory connections (second and third pic respectively). Both

types of connections result in burst synchrony, but the latter desynchronizes
pikes.
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Figure: Uncoupled SubHopf/Fold Cycle burster (first pic), coupled via

excitatory and inhibitory connections (second and third pic respectively). Both

types of connections result in burst synchrony, but the latter desynchronizes
pikes.
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Figure: Uncoupled SubHopf/Fold Cycle burster (first pic), coupled via

excitatory and inhibitory connections (second and third pic respectively). Both

types of connections result in burst synchrony, but the latter desynchronizes
pikes.
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Recapitulation

@ There are 16 planar fast-slow point-cycle bursters, 24 planar
fast-slow bursters, 120 known 2d/3d fast slow bursters up to
date

@ Some bursters are not fast-slow type, but hedgehog type, blue
sky or torus structure

@ There are also chaotic bursters

@ Bursters synchronize on various ways - spike sync, burst sync,
etc. Depending on the burster type sign of coupling may
result in one or the other synchronization regime.

@ More on bursting can be found here:
http://izhikevich.org/publications/nesb.htm
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