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Introduction

An oscillator is any entity that exhibits periodic behavior
The features of an oscillator can be captured by a
mathematical model (dynamical system), that has a limit
cycle in his phase space
World is full of oscillators, ranging from pendulum, neutron
stars (pulsars), biological cells etc. In particular neurons
(when they spike or burst) exhibit oscillations.
A lot of mathematical biology (and computational
neuroscience) is in fact the study of coupled oscillators.
Next two lectures follow Izhikevich ”Dynamical systems is
neuroscience” chapter 10, which is available on the web.
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Assume we have a dynamical system

d~x
dt = f (~x)

with exponentially stable limit cycle (that is any deviation from the
cycle converges to the cycle as e−t). Furthermore lets assume the
system receives additional inputs at times ts , that instantaneously
increase the variable ~x by vector ~A:

d~x
dt = f (~x) + ~Aδ(t − ts)

where δ(t) is the Dirac delta. We will usually assume that ~A has got
only one nonzero component (that is the reset is performed along
one of the variables, usually voltage like).
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The system
d~x
dt = f (~x)

can be replaced with a simpler phase model

dϑ
dt = 1

where the phase variable ϑ ∈ [0,T ] where T is the period of oscilla-
tions of the original system. We therefore replace the original limit
cycle with a S1 circle.

Phase of oscillation is the distance (with respect to vector field f )
along the cycle from any fixed point on the cycle. We have to choose
the point of zero phase, which can be for example the peak of the
spike (since it is very simple to track).
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Figure: Phase model.
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Isochrons

The concept of a phase is well defined on the limit cycle.
However, since the cycle is attracting, phase can be extended
to some (possibly large) neighborhood of the cycle
Assume we choose some point x . In order to attribute a phase
we study the forward trajectory x(t) which approaches the
cycle exponentially. Say at some time tε the trajectory is
closer that ε from the cycle. The nearest point on the cycle
has phase ϑtε .
We may therefore approximate the phase of original point x as
ϑ− tε. Generally:

ϑ(x) = lim
ε→0

ϑtε − tε
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Isochrons

Consequently we have a mapping ϑ : U ⊆ Rn → [0,T ] ⊂ R
which ascribes phase to any point of the phase space
sufficiently near the limit cycle.
The mapping is as continuous as the vector field, and so for
smooth systems it makes sense to define the sets for which
ϑ = const, that is for any α ∈ [0,T ] we have ϑ−1(α)

Any such set of a constant phase is called an isochron (iso -
constant, chronos - time/phase). Isochrons are mapped to
isochrons by the flow f . Furthermore for any isochron I

ΦT (I) ⊂ I

(the image of I under the flow of the vector field falls to itself
after making one cycle of length T )
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Figure: Isochrons extend the notion of a phase away from the limit cycle.
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Figure: Phase portraits of various oscillators with isochrons.
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Andronov-Hopf oscillator in complex coordinates:

dz
dt = (1 + i)z − z |z |2

is sometimes called radial isochron clock (for obvious reasons). Van
der Pol oscillator:

dx
dt =x − x3 − y

dy
dt =x

named for Dutch physicist Balthasar van der Pol was originally de-
fined as

d2x
dx2 − ε(1 − x2)

dx
dt + x = 0
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Phase resetting curve

The phase is defined on a significant portion of the phase
space using isochrons
When the oscillator is stimulated with the brief pulse, the
state of the system jumps suddenly (possibly out of the limit
cycle), but to some new isochron (new phase).
Consequently the input of the system resets the phase. Given
the stimulus ~A we can get the curve that shows how the
phase changes with respect to the original phase of the system
at the time of stimulus. The curve is called a phase resetting
curve (PRC for short).
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Figure: Phase resetting by a brief pulse.
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Figure: Phase resetting by a brief pulse.
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By definition the new phase after reseting by vector ~A:

ϑnew = ϑ+ PRC~A(ϑ)

When |~A|→ 0 then

PRC~A(ϑ)

|~A|
=
ϑnew − ϑ

|~A|
→ ∂ϑ

∂~A

Consequently
∂PRC~A(ϑ)

∂~A
= ∇ϑ

at ~A = 0
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Figure: PRC of the INa,p + IK model with class I excitability (stimulus
amplitude 0.2 in voltage).
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Figure: PRC of the INa,p + IK model with class II excitability (stimulus
amplitude 0.2 in voltage).
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Strong/weak resetting

Whenever the vector ~A is small, the resetting is
straightforward and nothing very surprising can happen.
However if ~A is long enough that the reset can reach the
equilibrium point inside the cycle, strange things may happen.
When the reset hits the equilibrium exactly, the oscillation
halts.
If it hits further than the equilibrium, the oscillation continues
but the new phase skips a lot of isochrons, resulting in a
discontinuity in PRC.
Sometimes instead of PRC researchers use PTC (phase
transition curve). Both approaches are equivalent.

PTC(ϑ) = (ϑ+ PRC(ϑ)) mod T
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Figure: Strong and weak resetting in Andronov-Hopf oscillator.
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Time crystals

PRC and PTC are defined for a vector ~A, but not only the
direction of ~A influences the curve but also its amplitude
(recall strong/weak resetting)
The combined PTC plotted against phase and amplitude of ~A
is called a time crystal.
Time crystals can have very complex shapes depending on the
properties of the oscillator (structure of nearby bifurcations
etc).
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Figure: Time crystal of the Andronov-Hopf oscillator.
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Figure: Time crystal of the van der Pol oscillator
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Figure: Time crystal of the INa,p + IK model with class I excitability
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Figure: Time crystal of the INa,p + IK model with class II excitability
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Figure: Time crystal of the INa,p + IK model with class II excitability
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Poincaré phase maps

Assume we have an oscillator with intrinsic period T
stimulated with pulses with period Ts

Knowing the PRC we can derive the phase just before the
n + 1 pulse:

ϑn+1 = (ϑn + PRC(ϑn) + Ts) mod T

We obtain a iterative map, called Poincaré phase map. By
studying properties of the map, we can decide wether two
oscillators will synchronize, phase lock etc.
Note for example that a fixed point of the map means that
the forced oscillator synchronizes with with forcing signal!
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Figure: Poincare phase map for Andronov-Hopf oscillator (puse 0.3 on first
variable, forcing Ts = 6.1) and the corresponding pulse train.
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Figure: Poincare phase map for Andronov-Hopf oscillator (puse 0.3 on first
variable, forcing Ts = 6.1) and the corresponding pulse train.
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Iteration maps have a lot in common with differential
equations (to some extent an iteration map is a discrete
analog of a differential equation)
Much like dynamical systems, iteration maps may have a fixed
points (equilibria) whenever:

ϑ = f (ϑ)

The fixed point may either be stable or unstable, it may
appear and disappear via bifurcations. Geometrically equilibria
appear at intersections of f (ϑ) and identity function,

0 = ϑ− f (ϑ)

The stability of a fixed point depends on the derivative of f !
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The stability of fixed points of a map f depends on the
derivative m = f ′ called Floquet multiplier of a mapping.
When |m| < 1 the point is stable while with |m| > 1 the point
is unstable.
The derivation is fairly simple - the fixed point is at the
intersection of the diagonal (slope 1) and the map. The map
itself can be locally approximated with a linear function
fl(x) = m(x − x0) + f (x0) = f ′(x0)(x − x0) + f (x0)

If |m| < 1 the sequence of points will converge to x0 while
iterating the linearized map above (easy to check!)
The analogy with continuous dynamical systems is such that
|m| = eλ, so |m| < 1 (λ < 0) is stable, |m| > 1 (λ > 0) is
unstable and |m| = 1 (λ = 0) is a bifurcation point.
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Figure: Poincare phase map for Andronov-Hopf oscillator (puse 0.3 on first
variable, forcing Ts = 5.9) and the corresponding pulse train.
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Figure: Poincare phase map for Andronov-Hopf oscillator (puse 0.3 on first
variable, forcing Ts = 5.9) and the corresponding pulse train.
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Bifurcations of maps

Equilibria of maps appear and disappear via a fold bifurcation
- discrete analog of saddle-node bifurcation (two equilibrium
point - stable and unstable collide)
An equilibrium may also loose stability via a flip bifurcation -
discrete analog of Andronov-Hopf bifurcation. In that case a
periodic cycle emerges.
The fold bifurcation leaves a ghost attractor (much like with
continuous systems) resulting in a slow transition.
Equilibria may coexist with cycles resulting in rich
synchronization regimes of two oscillators.
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Figure: Changes to the Poincare phase map for Andronov-Hopf oscillator for
Ts = 6.2...5.7, pulse 0.3
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Figure: Changes to the Poincare phase map for Andronov-Hopf oscillator for
Ts = 6.2...5.7, pulse 0.3
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Figure: Changes to the Poincare phase map for Andronov-Hopf oscillator for
Ts = 6.2...5.7, pulse 0.3
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Figure: Changes to the Poincare phase map for Andronov-Hopf oscillator for
Ts = 6.2...5.7, pulse 0.3
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Figure: Changes to the Poincare phase map for Andronov-Hopf oscillator for
Ts = 6.2...5.7, pulse 0.3
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Synchronization

A forced oscillator may either:
Synchronize to the forcing signal - this corresponds to a fixed
point of the Poincaré phase map. Synchronization may either
be stable or unstable.
p/q phase lock - every p cycles of the oscillator and every q
cycles of the forcing signal the trains meet. Phase locking
corresponds to periodic cycles of phase maps.
fail to synchronize - the failure can be complete (the trajectory
of the map becomes purely chaotic), but there can also be
cycle slipping in which the oscillator seems to synchronize with
the forcing signal, but then after possibly significant time, the
cycle slips and synchronization fails. This corresponds to slow
transitions near fold bifurcation of the map.
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Figure: Failure to synchronize - Andronov-Hopf oscillator for Ts = 3 pulse 0.3
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Figure: Failure to synchronize - Andronov-Hopf oscillator for Ts = 3 pulse 0.3
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Figure: 2/2 phase locking - Andronov-Hopf oscillator for Ts = 3 pulse 0.9
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Figure: 2/2 phase locking - Andronov-Hopf oscillator for Ts = 3 pulse 0.9
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Figure: Cycle slipping - Andronov-Hopf oscillator for Ts = 3 pulse 0.9

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 12 34/42



Introduction
Phase model
Phase maps

Recap

Fixed points
Synchronization
Phase locking
Arnold tongues
Farey fractions

300 350 400 450 500 550 600 650
0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure: Cycle slipping - Andronov-Hopf oscillator for Ts = 3 pulse 0.9
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Phase locking

p/q phase locking typically occurs when pT ≈ qTs

Synchronization corresponds to 1/1 phase locking
p/q phase locking solution corresponds to a periodic orbit of
the map ϑn = ϑn+q. Such periods are equilibria of iterations,
that is

ϑn+1 = f q(ϑn)

where f q = f ◦ f ◦ f ◦ . . . ◦ f
Phase locking and synchronized solutions may coexists for the
same input pulse train. The oscillator may converge to either
one depending on the initial phase shift and be switched to a
different regime by a clever pulse.
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Arnold Toungues

To synchronize an oscillator the phase map has to interest the
diagonal (so that there could be a fixed point).
When the amplitude of the stimulus decreases, also |PRCA(ϑ)|
decreases, and so the range of Ts such that the map

ϑn+1 = (ϑn + PRC(ϑn) + Ts) mod T

intersects diagonal shrinks.
When plotted on Ts × A, the regions of synchronization and
phase locking look like tongues, shrinking as |A|→ 0
These regions are called Arnold Tongues after Vladimir
Arnold, Russian mathematician born 12 June 1937 in Odessa.
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Figure: Arnold tongues for Andronov-Hopf oscillator, horizontal axis is the
phase of stimulus (0 − 1), vertical amplitude (0 − π

2 )
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Figure: Arnold tongues for Andronov-Hopf oscillator, horizontal axis is the
phase of stimulus (0 − 1), vertical amplitude (0 − 2π)
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The above pictures were plotted for

ϑn+1 =

(
ϑn + Ts −

A
2π sin(2πϑn)

)
mod 1

where ϑ,Ts ∈ [0, 1]. The map is called a circle map. The term

−
A
2π sin(2πϑn) = PRCA(ϑn)

is the PRC. Arnold tongues for other oscillators may look differently.

Phase map may not be a reliable determinant of the behavior of
oscillators if the amplitude of the input is too large (the trajectories
are pushed away from the limit cycle).
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Farey fractions

The figures above have a very peculiar mathematical
properties. First of all, Arnold tongues form a fractal.
Secondly, an Arnold tongue emerges from every rational
number on the A = 0 line. Therefore the set of elements in
the tongues for A = 0 has (Lebesgue) measure zero, whereas
for any A > 0 it has measure grater than zero.
When sorted by size (and the phase of stimulus is scaled to
[0, 1]), Arnold tongues hit the so called Farey fractions, a very
mysterious and emerging in many aspects of computer science
sequence.
n-th Farey sequence contains sorted all reduced fractions with
denominator at most n, e.g.:

F5 = {
0
1 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1 }
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Figure: Ford Circles are touching the axis in Farey fractions. Farey sequence is
surprisingly frequent in computer science.
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Recapitulation

Synchronization of coupled oscillators is a problem frequently
found in biological sciences and engineering.
The theory of coupled oscillators is rich and full of elegant
mathematical insights.
Complex oscillators like neurons, can be reduced to their
phase models. Together with the PRC (phase resetting curve)
the phase model is sufficient to determine synchronization
properties via a Poincaré phase maps
The methodology is only valid if the limit cycles are
exponentially stable, and the resetting was not too strong!
Phase maps themselves are an interesting subject, resulting in
Fractal Arlond tongues, Farey sequences etc.
PRC can be useful for dealing with the jet-lag!
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