
Introduction
Oscillators continued

Synaptic plasticity and learning
Polychrony

Recap

Mathematical Foundations of Neuroscience -
Lecture 14. Synchronization of neurons and

synaptic plasticity

Filip Piękniewski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Toruń, Poland

Winter 2009/2010

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 14 1/49

http://www.mat.umk.pl/~philip/


Introduction
Oscillators continued

Synaptic plasticity and learning
Polychrony

Recap

Neurons are either in excitable state, in which they are
sensitive to incoming signals , or excited in which they
become oscillators.
Some neurons are also capable of bursting, which is a
composition of oscillations working on different timescales
Eventually, however neurons need to be connected in a
network to perform any complex operations expected from the
nervous systems
One of the basic abilities of nervous systems is learning, a
process in which some properties of a neural ensemble change
Learning (at least some forms of learning) is most probably
done in synapses.
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Mean field approximations

Having a set of items difficult to analyze it is sometimes
convenient to get more such items!
In particular heaving infinitely many complex items can make
things a lot simpler, than having a finite number of them.
The limit with the number of interacting items n→∞ is
called a thermodynamic limit.
The analogies here are such: it is easier to predict the action
of a crowd than of an individual person. It is easier to predict
the behavior of a volume of a gas, than a single particle.
The field of science which plays with such approximations is
called statistical mechanics. Lets see what it can do with
coupled oscillators.
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Consider the Kuramoto model:

ϕ ′
i = ωi +

K
n

n∑
j=1

sin(ϕj −ϕi)

where K > 0 is the coupling strength, and 1
n ensures that the

model makes sense when n→∞
Consider the complex valued sum

1
n

n∑
j=1

eiϕj

Any eiϕj lays on the unit circle, and the sum is barycentric, so
the value of the sum lays in the unit disc.
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Denote:

r =

∣∣∣∣∣∣
1
n

n∑
j=1

eiϕj

∣∣∣∣∣∣
, ψ = arg


1

n

n∑
j=1

eiϕj


 =

1
n

n∑
j=1

ϕj

we have

reiψ =
1
n

n∑
j=1

eiϕj

The value reiψ is called Kuramoto synchronization index, r is
called the order parameter. Note that synchronized state
ϕi = const has r = 1. Incoherent state on the other hand with
all phases chosen randomly from the unit circle has r ≈ 0.
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Now we have

reiψ =
1
n

n∑
j=1

eiϕj / · e−iϕi

rei(ψ−ϕi) =
1
n

n∑
j=1

ei(ϕj−ϕi)

⇓

=
(

rei(ψ−ϕi)
)
= =


1

n

n∑
j=1

ei(ϕj−ϕi)




r sin(ψ−ϕi) =
1
n

n∑
j=1

sin(ϕj −ϕi)
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Substituting in the original formula we obtain:

ϕ ′
i = ωi + Kr sin(ψ−ϕi)

From this expression we can deduce that the oscillators are
pulled into the direction of a synchronized cluster (with phase
ψ) with the strength r proportional to the size of the cluster
size.
Now lets assume that frequencies ωi are randomly distributed
around 0 with symmetric probability density function g(ω),
and moreover lets consider the limit n→∞. We can assume
without the loss of generality that the cluster ψ = 0. We have

r = rei0 = lim
n→∞ 1

n

n∑
j=1

eiϕj =

∫
S1

eiϕ(ω)g(ω)dω
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Now the network consists of elements oscillating with the
cluster |ω| < Kr ⇒ ω+ Kr sin(0 −ϕ) = ω− Kr sin(ϕ) < 0
for ϕ ≈ 0, and those not oscillating with the cluster. The
contributions from the other oscillators cancel each other on
average (because they are drifting over the circle) and we
have:

r =

∫
S1

eiϕ(ω)g(ω)dω ≈
∫
|ω|<Kr

eiϕ(ω)g(ω)dω

Since g is symmetric, the imaginary parts of eiϕ(ω) cancel
out and:

r ≈
∫
|ω|<Kr

eiϕ(ω)g(ω)dω =

∫
|ω|<Kr

cosϕ(ω)g(ω)dω
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The condition for locking with the cluster is

0 = ω+ Kr sin(0 −ϕ) ⇔ ω = Kr sin(ϕ)

Substituting ω = Kr sin(ϕ) we obtain:

r ≈
∫
|ω|<Kr

cosϕ(ω)g(ω)dω = rK
∫π/2

−π/2
g(rK sinϕ) cos2ϕdϕ

the self-consistency equation. Note that incoherent r = 0 is
always a solution to the equation. Assume for a moment that
r 6= 0. Then:

1 = K
∫π/2

−π/2
g(rK sinϕ) cos2ϕdϕ < K

∫π/2

−π/2
g(0) cos2ϕdϕ
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This imposes:

1
K < g(0)

∫π/2

−π/2
cos2ϕdϕ

Now recall (from high school?) that
cos 2ϕ = cos2ϕ− sin2ϕ = 2 cos2ϕ− 1 and so
cos2ϕ = 1+cos 2ϕ

2 , so

1
K < g(0)1

2

∫π/2

−π/2
1 + cos 2ϕd2ϕ = g(0)1

4

(
2π+

∫π
−π

cosϕdϕ
)

=g(0)1
4 (2π+ 0) = g(0)π

2

Consequently for K > Kc = 2
πg(0) another, partially synchronized

solution emerges.
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SNIC oscillators

Before we investigate synapses, we will analyze an example of
how theory of coupled oscillators works with Saddle-node on
invariant circle oscillators.
Recall that a neuron close to the saddle node on invariant
circle bifurcation can be expressed (by a continuous change of
variables) in a canonical model

dx
dt = 1 + x2

The model is called a quadratic integrate and fire neuron.
x diverges to infinity in finite time. In models we usually
assumed that there is a cutoff value, and a reset.
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SNIC oscillators

For theoretical studies we may use a different approach:
identify −∞ and ∞, and assume the model is defined in an
extended real line R ∪ {−∞,∞}. In such a case we obtain an
oscillator.
The solution of

dx
dt = 1 + x2

that originates at −∞ is − cot x since

(− cot t) ′ = 1
sin2 t

=
sin2 t
sin2 t

+
cos2 t
sin2 t

= 1 + cot2 t
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Let us now derive the PRC. We know that the solution is
x(t) = cot t = tan

(
t − π

2
)

with period T = π. Inverting the
formula we get:

t =
π

2 + arctan(x)

Now assume the state of the system jumps by some value A,
so x(t) = cot t + A. PRC is the phase difference:

PRCA(ϑ) = ϑnew − ϑ =
π

2 + arctan(x + A) − π

2 − arctan(x) =

= arctan (cot ϑ+ A) − arctan (cot ϑ) =

= arctan
(

tan
(
ϑ−

π

2

)
+ A

)
− arctan

(
tan
(
ϑ−

π

2

))
=

= arctan
(

tan
(
ϑ−

π

2

)
+ A

)
−
(
ϑ−

π

2

)
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Note that:

∂PRC(A, ϑ)
∂A =

∂

∂A arctan
(

tan
(
ϑ−

π

2

)
+ A

)
=

=
1

1 + (cot(ϑ) + A)2 ≈ |A ≈ 0| ≈ 1
1 + (cot(ϑ))2 =

= sin2 ϑ = iPRC(ϑ)

so for small A where we assume that the PRC scales linearly
we have PRC(A, ϑ) = A sin2 ϑ
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Weak coupling

Given the infinitesimal PRC we can transform the weakly
coupled system:

dx
dt = 1 + x2 + εp(t)

into an equivalent phase model:
dϑ
dt = 1 + ε sin2(ϑ)p(t)

We may note right away, that the system is insensitive to
inputs occurring during the spike (when sin2 ϑ ≈ 0). The
system is most sensitive to inputs near the ghost attractor.
Furthermore sin2 ϑ > 0 for all ϑ so excitatory inputs can only
advance the spike, while inhibitory inputs can only delay the
spike.
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Gap junctions

Recall that electrical synapse (gap junction) conducts current
from one neuron to another proportionally to its intrinsic
conductance and the potential difference between the
membranes.
Assume we have two SNIC oscillators coupled via gap
junctions:

dx1
dt = 1 + x2

1 + ε(x2 − x1)

dx2
dt = 1 + x2

2 + ε(x1 − x2)
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Gap junctions

The system can be converted into a phase model:

dϑ1
dt = 1 + ε sin2(ϑ1)(cot ϑ1 − cot ϑ2)

dϑ2
dt = 1 + ε sin2(ϑ2)(cot ϑ2 − cot ϑ1)

which can be further simplified and expressed in terms of
phase deviation coordinates using the average interaction
function:

H(χ) =
1
π

∫π
0

sin2 t(cot t − cot(t + χ))dt =
1
2 sin 2χ

where χ = ϑ2 − ϑ1
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Gap junctions

Finally we obtain
dϕ1
dt =

ε

2 sin(2(ϕ2 −ϕ1))

dϕ2
dt =

ε

2 sin(2(ϕ1 −ϕ2))

Subtracting the equations we find that the phase difference
χ = ϕ2 −ϕ1 satisfies:

dχ
dt = −ε sin 2χ

Following Ermentrout’s condition we find that the
synchronized state χ = 0 is stable ((sin 0) ′ > 0), while the
antiphase χ = π

2 is not.
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Weak pulses

Now assume the two oscillators are pulse coupled, that is each
oscillator is reset by a delta function at the moment the other
”spikes”. The system

dx1
dt = 1 + x2

1 + ε1δ(t − t2)

dx2
dt = 1 + x2

2 + ε2δ(t − t1)

has a phase model:

dϑ1
dt = 1 + ε1 sin2(ϑ1)δ(t − t2)

dϑ2
dt = 1 + ε2 sin2(ϑ2)δ(t − t1)
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Note that

H(χ) =
1
π

∫π
0

sin2(t)δ(t + χ)dt =
1
π

sin2 χ

(convolution of any function with δ returns the original
function).
The corresponding phase deviation model is

dϕ1
dt =

ε1
π

sin2(ϕ2 −ϕ1)

dϕ2
dt =

ε2
π

sin2(ϕ1 −ϕ2)

The phase difference satisfies:
dχ
dt =

ε2 − ε1
π

sin2 χ
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Weak pulses

Since
dχ
dt =

ε2 − ε1
π

sin2 χ

when the coupling is identical (ε1 = ε2) we have

dχ
dt = 0

and the oscillators preserve their initial phase difference.
If ε1 6= ε2 the equilibrium χ = 0 is only neutrally stable
χ ′(0) = 0, and it becomes unstable for networks three and
more pulse coupled SNIC oscillators.
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Now assume the coupling is no longer delta, but some long
lasting p(t)

dx1
dt = 1 + x2

1 + ε1p(t − t2)

dx2
dt = 1 + x2

2 + ε2p(t − t1)

has a phase model becomes:

dϑ1
dt = 1 + ε1 sin2(ϑ1)p(t − t2)

dϑ2
dt = 1 + ε2 sin2(ϑ2)p(t − t1)
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The phase deviation interaction function H(χ) is given by:

H(χ) =
1
π

∫π
0

sin2(t)p(t + χ)dt

The phase synchronized solution χ = 0 i stable when
H(0) ′ > 0, that is:

dH(χ)

dχ

∣∣∣∣
χ=0

=
1
π

∫π
0

sin2(t)p ′(t)dt > 0

Now everything depends where p ′(t) is positive/negative with
respect to sin2(t) which weights the integral.
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Synaptic plasticity and learning

Coupled oscillators can be cleverly arranged to perform certain
complex computational tasks
However the brain is not explicitly wired to include all of the
complex tasks that it may come across during lifetime. If it
were, we wouldn’t have to learn anything!
But the brain is capable of learning new actions and abilities,
therefore it has to be plastic and rewire itself.
There are many ways of learning, and many types of memory.
Short term memory can be encoded in the neural activity (by
keeping the neural ensemble in some kind of an attractor).
Long term memory is encoded in connectivity and synapses.
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Hebbian learning

The foundations of synaptic learning were established by a
Canadian scientist, Donald Olding Hebb.
In his important book ”The Organization of Behavior” (1949)
he noted: When an axon of cell A is near enough to excite cell
B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is
increased
In other words: ”Neurons that fire together wire together”
If we denote by σi and σj the activity of i-th and j-th neuron
respectively, then for η > 0

dwij
dt = ησiσj
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Hebbian learning

Hebb’s original formulation is rather general, and there are
may ways to implement his principle. The weight for example
may depend on the average cooperative activity in response to
some number of samples:

wij =
1
n

n∑
k=1

σi(ξk)σj(ξk)

note that when new sample ξ arrives the weight change is
proportional to σi(ξ)σj(ξ) as postulated.
σ may denote the average spiking rate in response to a
pattern, and is usually assumed to σ ∈ [0, 1] or even binary
σ ∈ {0, 1}
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Hebbian learning

Hebb’s principle is very general and useful, many neural
algorithms rely on it in the theory of artificial neural networks
(where a neuron is usually assumed to sum the input and
wrap it with sigmoidal activation function).
However essentially the synaptic weight formula is unstable,
and requires renormalization (otherwise the weights would hit
infinity). Various renormalization techniques are used, for
example Oja rule (after prof. Erkki Oja):

dwij
dt = ησj(σi − σjwij)

Oja rule is self normalizing (when wij becomes large, it
dominates the equation and converges).
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Bienenstock-Cooper-Munro (BCM) synapse

Some experiments have shown that the synaptic plasticity
satisfies the following properties. The change of weights wij
is:

proportional to presynaptic activity σi
proportional to a non monotonic function of postsynaptic
activation Φ(σj). For low σj the weights are decreased, while
for larger increased. The border point between growth and
decay is called the activation threshold θM
θM is itself a superlinear (growing faster than linear) function
of the history of postsynaptic activity σj

There are many possible rules that satisfy the above
conditions, for example

dwij
dt = ησj(σj − θM)σi − εwij
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Bienenstock-Cooper-Munro (BCM) synapse

Where for example

θM(t) = 1
ϑ

∫ t

−∞ σ2
j (τ)e

t−τ
ϑ dτ

is the decaying temporal average of postsynaptic activity σj

BCM synapses result in neuronal selectivity (neuron becomes
sensitive to only one input pattern), and competition. It also
explains the phenomenon of synaptic scaling, in which the
synapses scale with the reciprocal of the average neuronal
activity (synapses get stronger when activations become
weaker due to metaplasticity of the variable activation
threshold).
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Spike timing dependent plasticity (STDP)

Neither Hebb’s principle, neither Oja rule, nor BCM takes into
account temporal structure of spikes arriving a the pre and
postsynaptic neurons (though Hebb’s original formulation
mentioned of a presynaptic activity contributing to a
postsynaptic spike).
Spike Timing Dependent Plasticity is a synapse modifying
rule, that relies on temporal structure of spikes in ms scale.
STDP has been found experimentally in many synapses. In
many aspects it materializes Hebbian learning, but with
respect to single spikes, not spiking rates.
STDP has been discovered by Henry Markram and others in
mid 90’ties.
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Spike timing dependent plasticity (STDP)

STDP modifies the synapse by taking into account relative
distances of pre and postsynaptic spikes.
Conceptually, if presynaptic spike precedes postsynaptic one by
a short period of time, then probably the presynaptic activity
contributed to the postsynaptic spike. In such cace synapse
should be amplified (in agreement with Hebbian approach)
If a presynaptic spike arrives late, then it is obvious it did not
contribute to the postsynaptic activity. Therefore such
synapse should be weakened.
These principled get inverted for inhibitory connections.
The influence of the spikes on the synapse should quickly
decay as the relative distance between the spikes grows (since
their mutual influence becomes negligible).
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∆t = tpost − tpre

STDP+(∆t) = A+e
−∆t
τ+

STDP−(∆t) = A−e
−∆t
τ−

S
y
n
ap
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Figure: Spike timing dependent plasticity - diagram.
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The basic STDP model looks as follows:

dwij
dt =

n∑
s=1

n∑
k=1

W (t(j)
s − t(i)

k )

where t(j)
s is the time of s-th spike of postsynaptic neuron j ,

t(i)
k is the time of k-th spike of presynaptic neuron i ,

W (t) = A+et/τ+ for t > 0 and W (t) = A−et/τ− for t < 0.
A+,A−, τ+, τ− are parameters.
The summation goes over all pairs of spikes. There are other
versions of STDP in which only nearest neighbors spikes
contribute to plasticity. Other variants are also possible.
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Though seems complicated, the STDP as presented can be
efficiently implemented online.
Assume that each presynaptic spike leaves an exponentially
decaying trace:

τ+
dP
dt = −P +

n∑
k=1

δ(t − t(i)
k )

Similarly each postsynaptic spike leaves a trace

τ−
dD
dt = −D +

n∑
s=1

δ(t − t(j)
s )
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The weight change is then:

dwij
dt = A+ · P

n∑
s=1

δ(t − t(j)
s ) + A− · D

n∑
k=1

δ(t − t(i)
k )

The weight therefore is potentiated by A+ · P at the time of
postsynaptic spike, and depressed by A− · D at the time of
presynaptic spike.
The implementation is quite straightforward, each synapse has
two traces updated whenever spikes occur. Each
pre(post)synaptic spike modifies the weight proportionally
D(P) and increases P(D) (notice the inversion).
Other variants of STDP can be obtained by limiting the sums
(in practice this may require simulating additional traces).
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It turns out that nearest neighbors STDP is equivalent to
BCM for weakly correlated Poissonian pre/post synaptic spike
trains (Izhikevich, Desai 2003)
Nevertheless is seems that STDP it the most accurate
synaptic plasticity mechanism.
If the area below the negative STDP curve is larger that of
positive part, then on average depression will be stronger than
potentiation, and the neural ensemble should converge to a
homeostatic regime, with balanced synapses and spiking rates.
It is however reasonable to limit the possible synapse growth
and decay, either clipping or by wrapping the equations with a
symmetric quickly decaying function to limit growth rate at
the extreme regimes.
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In real life, the synapse may potentiate or depress as time
progresses
On the contrary to naive thinking, even if one synapse turns
strong it may get depressed by subsequent input (once a
synapse turns strong it may change to local spiking activity,
and in turn diminish)
After some time however, a kind of equilibrium may be
achieved in which most of the synapses remain constant. Such
a structured neuronal circuit may have interesting properties.
If the model is also equipped with axonal delays, then the
corresponding neuronal circuits can become very complex.
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Dendritic and axonal delays

Recall, that a neuron is a highly structured entity with
dendritic tree and possibly a very long axon.
There are many types of neurons found in various brain
structures. The most common include:

Pyramidal neurons - triangular shaped soma, single axon
emerging opposite to the dendritic tree. These are the basic
building block of the cortex and thalamus.
Basket neurons - with freely branching dendrites, lack of axon.
These cells are usually inhibitory interneurons.
Purkinje cell - very large cells with very complex dendritic tree,
found in cerebellum
Granule cell - tiny cells found in various parts of the brain
(including some layers of the cortex)
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Dendritic and axonal delays

When a spike is generated in a neuron, it will usually reach
the soma, and from there it will proceed into the axon or to
the opposite part of the dendritic tree.
Things can become very complex (as we’ve seen in
simulations), but on average the spike will reach terminal
synapse after some delay.
In a coarse grained setup we may as well assume, that each
neuron is connected to some others with certain (order of ms)
delays. Experiments show that the signal proceeds with the
speed of about 0.15m/s. Signal are much faster in long
myelinated fibers (axons), in which the speed o propagation
reaches 1m/s
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Dendritic and axonal delays

Most long axons are surrounded by a layer of myelin,
electrically insulating material made of lipids (80%) and
proteins (20%) produced by tiny Schwann Cells.
Myelin is white in appearance, and hence the fibers in the
brain are called white matter.
Myelinated axons are able to propagate signals as far as
meters with enhanced speed (1m/s) and reliability.
Propagation delays can therefore reach 10ms for
non-myelinated local axonal collaterals (assuming the reach at
most 1.5mm) and on the order of 100ms for myelinated
connections assuming they reach 10cm within the brain (they
may be longer in the spinal cord, spike the propagation
velocities are somewhat larger as well).
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Figure: Complete neuron cell diagram. Image courtesy of Mariana Ruiz
Villarreal (Available at: http://en.wikipedia.org/wiki/Image:
Complete_neuron_cell_diagram_en.svg)
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Polychronous groups

Propagation delays in combination with spike timing
dependent plasticity may result in spontaneous wiring of
selective neuronal circuits.
The firing within such a circuit are not synchronous, but time
locked (depending on the local structure of axonal delays). E.
Izhikevich coined a name polychronous to emphasize precise
time locking, but possible lack of synchrony.
STDP selects those connections that likely trigger
postsynaptic spiking, while depressing others (therefore
reducing noise). Such neuronal circuits are highly selective to
input. It is likely that such spontaneous groups are the brains
workhorse.
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Polychronous groups

A 2004 model by Izhikevich, Gally and Edelman shows the
concept on an example of a neuronal sphere with 100000
neurons.
The neurons are wired somewhat randomly, with some local
connections and some global connections, conduction delays
reaching 10ms and STDP and short depression/facilitation
After some time the model reaches homeostatic regime, with
fairly equal spiking rate.
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Figure: A sphere of 100000 neurons (on a tiny fraction showed).
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A simple algorithm was used to find polychronous groups:
Select an anchor excitatory neuron having two or more strong
(within 5% of the strongest connections) connections to other
excitatory neurons. This ensures that firing of the anchor neuron
increases the probability that target neurons will fire in the
appropriate time, resulting from axonal delays.
For the descendants of the anchor neuron, find any common
postsynaptic targets that have strong connections and matching
delays, that is to say if the descendants of the anchor neuron fire
excited by the anchor, the resulting spikes will reach the common
target synchronously (within 2ms interval). If no such common
targets are found, the anchor neuron is discarded.
If there are such common targets, they are added to the group.
The process is repeated, that is to say common postsynaptic
targets with matching delays for all the current members of the
group are found. The process finishes when there are no more
such targets.
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A

B

C

D

E

F

Postynaptic targets
spike after axonal delay

Spikes arrive at their
targets but not synchronously

Spikes arrive synchronously
causing strong excitation

t0 Anchor neuron spikes





Group members

Figure: A simple algorithm of finding polychronous groups based on anchor
neurons. In fact each neuron can be a member of many groups, while this
simple algorithm only finds at most one group per anchor neuron.
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Figure: 2% and 10% of polychronous groups found in a sphere of 100000
neurons.
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Figure: 2% and 10% of polychronous groups found in a sphere of 100000
neurons.
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In the initial period of the simulation (weights are random)
there are no groups at all.
Soon however, the algorithm is able to pick up growing
number of groups. After about an hour of model time (the
timing depends on the details of STDP which we will discuss
next week) the number of groups levels of at a couple of
thousands. Some of the groups persist for quite a while,
others disappear.
The careful study if the spike trains reveals group activation
events (though some groups might actually never be
activated).
The algorithm uses anchor neurons to find groups, but one
may search over say all triplets heaving common targets, In
such case the number of groups can explode and easily exceed
the number of neurons!
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Recapitulation

When the number of oscillators is large, mean field
approximations can become useful.
We’ve seen various properties of SNIC oscillators depending
on their coupling mechanism
The brain is a self wiring computer. The process of learning is
related to tuning synaptic connections.
Donald Hebb noticed that ”neurons that fire together, wire
together”
The more adequate incarnation of the above principle is
obtained via STDP
STDP together with conduction delays results in spontaneous
emergence of selective circuits (polychronous groups).
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