
Introduction
Neurons

Synapses
Connectivity

How to implement
Future?

Mathematical Foundations of Neuroscience -
Lecture 15. Building large models step by step

Filip Piękniewski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Toruń, Poland

Winter 2009/2010

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 15 1/38

http://www.mat.umk.pl/~philip/


Introduction
Neurons

Synapses
Connectivity

How to implement
Future?

Let us now quickly summarize the knowledge we’ve obtained
We will briefly sketch the details of a fairly accurate large
scale neuronal simulation (though many other frameworks are
possible)
We will see some tips on implementation with the current
technology
We shall sneak into the future...
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Neurons

We need to first establish the level of spatial accuracy of our
neuron. We can choose from:

A mesh based on morphology, with cable-like equation (high
accuracy, great computational demand)
Multi compartment model, with compartments connected via
conductances (quite good accuracy, but much faster)
Single compartment model with dendritic delays (very efficient,
yet still catches a lot of neuronal dynamics)
Single compartment model, no delays (very fast, rather
inaccurate)
Rate based models - no spatial dynamics, just rates - typical
artificial neural networks (efficient and useful in engineering,
but useless in the brain simulation)
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Figure: Different levels of accuracy in neuron modeling.
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Neural model

Next we have to choose the spiking model for the simulated mem-
brane:

Hodgkin-Huxley type model - accurate but inefficient
Simplified conductance based model (like INa,p + IK model) -
fairly accurate, only a little faster than HH.
Fithugh-Nagumo - quite accurate, quite efficient (no
exponentials, but requires small integration steps).
Izhikevich simple model - quite accurate, very efficient (no
exponentials, runs with large integration steps)
Neuromime - rather inaccurate, very efficient
Leaky integrate and fire - inaccurate, very efficient
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Depression-Facilitation

There are synapses which depress or facilitate in reaction to
spiking.
Henry Markram and his collaborators introduced in 1998 a
phenomenological model:

dR
dt =

1 − R
D

dw
dt =

U − w
F

where U, D, F are parameters. Whenever a spike is
propagated through the synapse R := R − Rw and
w := w + U(1 − w). R is the depression variable and w is the
facilitation variable. The total synaptic strength at time t is
equal S = Rw
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Figure: A synapse modeled by the phenomenological model of H. Markram
exhibiting depression (1) F = 50,D = 100,U = 0.5 and facilitation (2)
D = 100,F = 50,U = 0.2. By adjusting the parameters the model can
reproduce conductances of various synapses.
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Short term plasticity

Markram model quite well resembles experimental data, but
can still be too complex for very large simulations. In such
case one can downgrade into yet simpler solution, like the one
below.
The simplest formulation is:

dS
dt = (1 − S)/τs

and S := pS whenever an action potential is transferred. The
synapse gets depressed for p < 0 and facilitated for p > 0.
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The value of the short term depression-facilitation influences
the resulting receptor conductance. In the present scope we
assume there are four conductances gAMPA, gNMDA, gGABAA

and gGABAB . Each time a spike is propagated the appropriate
conductances are increased by wi→jSi = wi→jRiwi (before
depressing or facilitating) where wi→j is the strength of the
synapse from neuron i to neuron j .
The conductances have their own kinetics, that is they
diminish exponentially as

dg
dt = −g/τ

where τAMPA = 5ms, τNMDA = 150ms, τGABAA = 6ms and
τGABAB = 150ms
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STDP

To make a model interesting, it should be able to learn
(modify synapses)
Consequently one of the learning rules mentioned last week
should be implemented.
For spiking neurons it is best to use Spike Timing Dependent
Plasticity, as this rule seems to be most accurate, is stable
and possible to implement online via Long term
depression/potentiation (LTP, LTD) traces.
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Figure: Spike timing dependent plasticity - diagram.
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Assume that each presynaptic spike leaves an exponentially
decaying trace:

τ+
dP
dt = −P +

n∑
k=1

δ(t − t(i)
k )

Similarly each postsynaptic spike leaves a trace

τ−
dD
dt = −D +

n∑
s=1

δ(t − t(j)
s )

The weight change is then:

dwij
dt = STDP(t) = A+ ·P

n∑
s=1

δ(t−t(j)
s )+A− ·D

n∑
k=1

δ(t−t(i)
k )
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The result of STDP should be slow (order of
seconds/minutes). This can be achieved by taking very small
A+ and A−. For certain reasons it is not the best approach.
A better idea is to model the synaptic plasticity indirectly with
the help of a synaptic tag, an additional variable c (which
might be interpreted as the concentration of an enzyme
necessary for synaptic modification):

dc
dt =

−c
τc

+ STDP(t)

and then:
dwij
dt = cd

where d is the plasticity parameter (which could be time
dependent, e.g. concentration of dopamine which enhances
synaptic plasticity)
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How to obtain connectivity data?

For simple simulations, one can use any reasonable topology
with some fraction of random long range connections. Most
probably the unneeded connections will be wiped out by
synaptic plasticity. However such a setup could lack important
pathways that are essential for vital brain functions.
A more detailed large scale structure can be obtained from
Diffusion Tensor Imaging MRI (DTI). Note that slicer3d, a
free program that allows fiber tracking can save fibers into a
file! A ready source of brain-like connectivity!
Small scale structure of the cortex and other brain areas has
been studied for many years now, and much statistical data
on which neurons wire to what neurons is available (see e.g.
Izhikevich and Edelman 2007 PNAS paper).
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Difusion tensor imaging (DTI)

Figure: MRI fiber tracking using water diffusion tensor.
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Dendritic and axonal delays

In a coarse grained setup we may as well assume, that each
neuron is connected to some others with certain (order of ms)
delays. Experiments show that the signal proceeds with the
speed of about 0.15m/s. Signal are much faster in long
myelinated fibers (axons), in which the speed o propagation
reaches 1m/s
Propagation delays can therefore reach 10ms for
non-myelinated local axonal collaterals (assuming the reach at
most 1.5mm) and on the order of 100ms for myelinated
connections assuming they reach 10cm within the brain (they
may be longer in the spinal cord, spike the propagation
velocities are somewhat larger as well).
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How to implement?

Each neurosimulation can be divided into parts:
Neural dynamics (the decision whether to spike or not)
Spike propagation (forwarding spikes to their targets, possibly
including delays)
Synaptic plasticity (modulation of synapses in response to
their activity):

Simulation of binding kinetics of the neurotransmitter (GABA,
AMPA, NMDA etc)
Simulating the overall amount of neurotransmitter (short term
depression/facilitation)
Simulating slow changes to synapse strength (STDP, BCM or
other learning rule)
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Once we have the synaptic conductances we have to look
what currents they may cause through the membrane,
depending on voltage V . We generally have that:

Isyn = gAMPA(EAMPA − V )+

+ gNMDA

(V+80
60
)2

1 +
(V+80

60
)2 (ENMDA − V )+

+ gGABAA(EGABAA − V )+

+ gGABAB (EGABAB − V )

with EAMPA = 0, ENMDA = 0, EGABAA = −70, EGABAB = −90.
NMDA current looks strange but the formula is a fit to
empirical data.
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Eventually, using say the Izhikevich Simple Neuron (with reset) we
have (for a single compartment model):

dVi
dt =0.04V 2

i + 5Vi + 140 − Ui +
∑
j→i

gj,AMPA(0 − Vi)+

+
∑
j→i

gj,NMDA

(
Vi+80

60

)2

1 +
(

Vi+80
60

)2 (0 − Vi) +
∑
j→i

gj, GABAA(−70 − Vi)+

+
∑
j→i

gj,GABAB (−90 − Vi) +
∑

j∈gap(i)
ggapj→i(Vj − Vi)

dUi
dt =a(bVi − Ui)
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Consequently by solving with respect to Vi(t + 1)

Vi(t + 1) =

=
Vi(t) + ∆t

(
0.04Vi(t)2 + 5Vi(t) + 140 − Ui(t)+

1 + ∆t
(∑

j→i gj,AMPA +
∑

j→i gj,NMDA

(
Vi (t)+80

60

)2

1+
(

Vi (t)+80
60

)2+

−70
∑

j→i gj, GABAA − 90
∑

j→i gj,GABAB +
∑

j∈gap(i) ggapj→i(Vj − Vi(t))
)

∑
j→i gj, GABAA +

∑
j→i gj, GABAB

)
Ui(t + 1) = Ui(t) + ∆t (a(bVi(t) − Ui(t)))

W get a stable scheme, ready to use for large scale simulations.
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So assume that we are simulating single compartment neurons
with axonal delays.
If the integration step is of order 1ms then it makes sense to
consider only discrete delays (multiples of 1ms). Say the
maximum conduction delay is 50ms.
In such case we can keep the spikes on a set of queues. At
each step we process one queue (the spikes that arrive now at
their targets), possibly igniting their targets. The new spikes
are placed on the appropriate queues corresponding to the
delays of each axon. Since the step is 1ms and the maximal
delay is 50ms, we need only 50 queues for every delay, iterated
by time step (modulo 50).
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Note that the short term synaptic depression/facilitation
depends only on timing of the presynaptic spikes. Therefore if
we assume that each neuron has identical synapses (in terms
of short term plasticity), we can actually compute synaptic
depression/potentiation per neuron.
Secondly each neuron keeps its postsynaptic depression trace
(LTD). Now each synapse should have presynaptic
potentiation trace (LTP), but again the value of LTP depends
only on timing of presynaptic spikes and is identical (modulo
conductance delay) in every synapse of a single neuron. Since
maximal delay is 50ms, we keep all 50 past values of LTP
trace (each new one is obtained from previous via
multiplication by some factor < 1). If a postsynaptic neuron
spikes, it can potentiate the synapse tag by finding the
appropriate trace depending on the relative delay.
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Summarizing:
Each neuron keeps its state, its synaptic conductances, short
term depression/facilitation, one LTD trace and a number
(depending on the maximal conductance delay) of past LTP
traces.
Each neuronal spike evokes depression/facilitation update,
LTP and LTD increase and insertion of spikes into appropriate
queues. Also each tag of an input synapse is updated using
the appropriate value of delay dependent presynaptic LTP
trace.
Each arrival of a spike at a neuron (once the queue is
processed) evokes depression of a synaptic tag by postsynaptic
LTD trace and an increase in the corresponding synaptic
conductance.
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Since the conductance kinetics is linear:

dg
dt = −g/τ

and what comes in into neuronal equation is the sum:∑
j→i

g

we may simulate the global synaptic conductance:

gglobal =
∑
j→i

g ,
dgglobal

dt = −gglobal/τ

Consequently we have only one conductance trace per
neurotransmitter per neuron incremented by incoming spikes.
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Figure: A sample model structure.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 15 25/38



Introduction
Neurons

Synapses
Connectivity

How to implement
Future?

How to simulate?
Some optimization tricks
Parallelization
GPU
Neuromorphic hardware

Finally note that the Markram synapse model:
dR
dt =

1 − R
D − Rwδ(t − tspike)

dw
dt =

U − w
F + U(1 − w)δ(t − tspike)

by a substitution of variables:

Rfast = 1 − R wfast = w − U = −(U − w)

can be transformed into a more efficient form:
dRfast

dt = −
Rfast

D
dwfast

dt = −
wfast

F
then

Rw = (1 − Rfast) · (U + wfast)
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Parallelization

One obvious necessity in any simulation is parallelism.
For neural simulation most computations are done locally,
independently of the rest.
The crucial part that requires synchronization is spike
propagation.
Recall Amdahl’s law: if a portion P of your code can receive
speedup S (say S = N, where N is the number of parallel
processors) then the overall speedup of your program is:

1
(1 − P) + P

S

This means that a decent overall speedup with many
processors can only be achieved if the non parallelizing part of
the code is negligibly small!
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Neurons

Core 0

Neuronal dynamics 
step. Spikes are 

detected and added to 
appropriate queues. 

Neurons are processed 
in parallel.

Spike queue
Spike propagation 

step. Spike queues are 
processed in parallel. 

Concurrency may 
cause conflicts in this 
step, which requires 

locking. 
Neurons

Neurons

Core 1

Spike queue

Neurons

STOP

Weight update step 
(every 1000 simulation 

steps)
Weights Weights

1000ms
loop

main
loop

Figure: Structural presentation of the code used in simulation.
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In a straightforward implementation, target neurons have to
be protected by locks.
But any critical section in the code is a portion of non
parallelizing code, that diminishes overall speedup.
The locks can be avoided if no two spikes from two separate
queues can arrive in a common target in the same time. It
might not be easy, but it is possible to create a code that
would satisfy such conditions.
Technically the parallelization can be easily done using
openmp language extensions (for single machine SMP), or
using MPI etc (for clusters and computing farms).
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GPU

I recent years efficient parallel (vector like) processors have
been developed to support graphics accelerators used mainly
for gaming
Currently a powerful graphics card can easily exceed the
computing power of the CPU
GPU’s however need to be programmed differently than
CPU’s - usually they offer multiple cores (128, 512 etc) and a
fast, simple memory access. All cores run a single program
(called a kernel), but perform their operations on different
data. Threads can branch, but branching decreases efficiency.
The model of computing is sometimes called SIMT - Single
Instruction Multiple Thread
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1 void step cpu()
2 {
3 int i;
4 for(i=0;i<N;i++)
5 {
6 // Random number generator
7 rnd[i] = rnd[i]* 1103515245 + 12345;
8 float frand = (float)((rnd[i]/65536) % 32768)/32768;//

’’random’’ float
9 rnd[i] = rnd[i]* 1103515245 + 12345;

10 float frand1 = (float)((rnd[i]/65536) % 32768)/32768;
11 if (frand>0)
12 frand=sqrt(-2*logf(frand))*cosf(2*3.14159265*frand1);
13 if (i%5!=0) frand*=thalamic excitatory;
14 else frand*=thalamic inhibitory;
15 I[i]+=frand;
16 v[i]=v[i]+0.25*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);
17 v[i]=v[i]+0.25*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);
18 v[i]=v[i]+0.25*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);
19 v[i]=v[i]+0.25*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);
20 u[i]=u[i]+0.5*a[i]*(b[i]*v[i]-u[i]);
21 u[i]=u[i]+0.5*a[i]*(b[i]*v[i]-u[i]);
22 I[i]=0;
23 }
24 }
25
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1 void process spikes()
2 {
3 int i;
4 for(i=0;i<N;i++)
5 {
6 if (v[i]>30)
7 {
8 v[i]=c[i];
9 u[i]=u[i]+d[i];

10 for(int k=0;k<nei;k++) I[(i+k)%N]+=S[i*nei+k];
11 spikes++;
12 }
13 }
14 }
15
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1 global void step gpu(float *v gpu, float* u gpu, float* a gpu, float* b gpu, float*
I gpu, unsigned int *rnd gpu)

2 {
3 int i = blockIdx.x * blockDim.x + threadIdx.x;
4 int step = gridDim.x * blockDim.x;
5 for (; i < N gpu; i += step)
6 {
7 // Random number generator
8 rnd gpu[i] = rnd gpu[i]* 1103515245 + 12345;
9 float frand = (float)((rnd gpu[i]/65536) % 32768)/32768; //’’random’’

float
10 rnd gpu[i] = rnd gpu[i]* 1103515245 + 12345;
11 float frand1 = (float)((rnd gpu[i]/65536) % 32768)/32768; //’’random’’

float
12 if (frand>0)
13 frand=sqrt(-2*logf(frand))*cosf(2*3.14159265*frand1);
14 if (i%5!=0) frand*=thalamic excitatory;
15 else frand*=thalamic inhibitory;
16 I gpu[i]+=frand;
17 v gpu[i]=v gpu[i]+0.25*((0.04*v gpu[i]+5)*v gpu[i]+140-u gpu[i]+I gpu[i]);
18 v gpu[i]=v gpu[i]+0.25*((0.04*v gpu[i]+5)*v gpu[i]+140-u gpu[i]+I gpu[i]);
19 v gpu[i]=v gpu[i]+0.25*((0.04*v gpu[i]+5)*v gpu[i]+140-u gpu[i]+I gpu[i]);
20 v gpu[i]=v gpu[i]+0.25*((0.04*v gpu[i]+5)*v gpu[i]+140-u gpu[i]+I gpu[i]);
21 u gpu[i]=u gpu[i]+0.5*(a gpu[i]*(b gpu[i]*v gpu[i]-u gpu[i]));
22 u gpu[i]=u gpu[i]+0.5*(a gpu[i]*(b gpu[i]*v gpu[i]-u gpu[i]));
23 I gpu[i]=0;
24 }
25 }
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1 global void process spikes gpu(float *v gpu, float* u gpu, float* c gpu,
float *d gpu, float* I gpu, float* S gpu)

2 {
3 int i = blockIdx.x * blockDim.x + threadIdx.x;
4 int step = gridDim.x * blockDim.x;
5 int k;
6 for (; i < N gpu; i += step)
7 {
8 if (v gpu[i]>30)
9 {

10 v gpu[i]=c gpu[i];
11 u gpu[i]=u gpu[i]+d gpu[i];
12 for(k=0;k<nei gpu;k++) I gpu[(i+k)%N gpu]+=S gpu[i*nei gpu+k];
13 }
14 }
15 }
16
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The main program

1 struct timeval t1, t2, t3;
2 set up();
3 cout << "Running on CPU"<< flush << endl;
4 gettimeofday(&t1, 0);
5 for(int t=0;t<10000;t++)
6 {
7 process spikes();
8 step cpu();
9 if (t%1000==0) cout << ’.’<< flush;

10 }
11 gettimeofday(&t2, 0);
12 double time1 = (1000000.0*(t2.tv sec-t1.tv sec) + t2.tv usec-t1.tv usec)/1000000.0;
13 cout << endl;
14 cout << time1 << "s - time CPU"<< endl;
15 cout << "Running on GPU"<< endl;
16 for(int t=0;t<10000;t++) {
17 process spikes gpu<<<32, 128, 0>>>(v gpu,u gpu,c gpu,d gpu,I gpu,S gpu);
18 cudaThreadSynchronize();
19 step gpu<<<32, 128, 0>>>(v gpu,u gpu,a gpu,b gpu,I gpu,rnd gpu);
20 if (t%1000==0) cout << ’.’<< flush;
21 }
22 cout << endl;
23 cout << "Waiting for GPU to finish"<< flush << endl;
24
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Neuromorphic hardware

Figure: The real future is in the neuromorphic hardware. The figure shows
neuromorphic chips developed at the University of Heidelberg
http://www.kip.uni-heidelberg.de/cms/groups/vision/.
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There is a great interest in spiking neural networks, both in
the military and consumer applications
U.S. governments Defense Advanced Research Projects
Agency (DARPA) is running the SyNAPSE program (Systems
of Neuromorphic Adaptive Plastic Scalable Electronics) which
”seeks to develop a brain-inspired electronic ’chip’ that mimics
that function, size, and power consumption of a biological
cortex”.
There are many corporations and startups that seek more or
less similar goals:

Evolved machines http://www.evolvedmachines.com
Brain Corporation http://braincorporation.com

Studying neurocomputing is a good choice for the future!
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Oh, and a one more thing:
If the Moore’s law persists we should be able to reach the
computational power of a cerebral cortex by 2020, that is
within 10 years from now.
Raymond Kurzweil’s technological singularity may be nearer
than we think!
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