

Mathematical Foundations of Neuroscience -Lecture 3. Electrophysiology of neurons continued

Filip Piękniewski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

Winter 2009/2010

Currents Resting potential Conductances

Short summary

- We know from elsewhere that in the steady state equilibrium the total current across the membrane is $I_{total} = 0$.
- We know the Nerst potentials of lons, we only need to know the respective conductances to get the equation:

$$C\frac{dV(t)}{dt} = I(t)_{\text{total}} - I_{Na} - I_{K} - I_{CI} - I_{Ca}$$

running and find out what is the steady state membrane voltage.

• Sadly this is where the neuronal story begins...

イロト イポト イラト イラト

Currents Resting potential Conductances

Equivalent circuit

Figure: Electrical circuit equivalent to a patch of neuronal membrane.

Currents Resting potential Conductances

Resting potential

- At what level the Voltage across the membrane is in equilibrium? That is to say when is $\frac{dV}{dt} = 0$?
- It is easy to see, that if there were only one ionic current (e.g. sodium) the resting potential would be equal to its Nerst potential

$$0 = \frac{dV}{dt} = -I_{Na} = -g_{Na}(V - E_{Na})$$

since $g_{Na} \neq 0$ it follows that $V_{\text{rest}} = E_{Na}$

• But there are unfortunately more currents.

・ 同 ト ・ ヨ ト ・ ヨ ト

Currents Resting potential Conductances

Resting potential

• We can solve the equation

$$Crac{dV(t)}{dt} = I(t)_{ ext{total}} - I_{Na} - I_{K} - I_{CI} - I_{Ca}$$

by setting $\frac{dV(t)}{dt}$ and I(t) to zero. We then come up with a solution

$$V_{\text{rest}} = \frac{g_{Na}E_{Na} + g_{Ca}E_{Ca} + g_{K}E_{K} + g_{Cl}E_{Cl}}{g_{Na} + g_{Ca} + g_{K} + g_{Cl}}$$

 It is easy to verify that V_{rest} indeed satisfies the equation. Note that V_{rest} is a weighted (by conductances) average of all equilibrium potentials!

Currents Resting potential Conductances

Conversely the equation

$$C\frac{dV(t)}{dt} = I(t)_{\text{total}} - I_{Na} - I_{K} - I_{CI} - I_{Ca}$$

can be expressed

$$C\frac{dV(t)}{dt} = I(t) - g_{\rm inp}(V - V_{\rm rest})$$

where $g_{inp} = g_{Na} + g_{Ca} + g_K + g_{Cl}$. The quantity $R_{inp} = \frac{1}{g_{inp}}$ is called the input resistance. It follows that

$$V
ightarrow V_{
m rest} + IR_{
m inp}$$

トイラトイラト

Currents Resting potential Conductances

Ionic conductances

- So if we have the equations, we only need to get the conductances and were done!
- Unfortunately the ionic conductances are the source of neuronal excitability and various behaviors!
- Conductances are not constants (Ohmic), they are functions of time and voltage itself!
- That creates a closed loop, voltage depends on conductances which depend on voltage and so on... Smells like trouble...
- How than can we measure the conductances?

・ 同 ト ・ ヨ ト ・ ヨ ト

Currents Resting potential Conductances

Voltage clamp experiment

- The idea is to artificially alter membrane voltage by the so called voltage clamp
- One electrode is used to measure membrane voltage while the other is used to apply appropriate current.
- The current variates with time, approaching steady state asymptotic value. That way the so called I-V (current-voltage) curves can be obtained.
- Further variants of the experiment have beed devised in order to measure conductances of particular ions etc.

- 4 月 ト 4 月 ト 4 月

Currents Resting potential Conductances

Voltage clamp experiment

Figure: Voltage clamp scheme

イロト イボト イヨト イヨト

Э

Currents Resting potential Conductances

Voltage clamp experiment

Figure: Typical outcome of the voltage-clamp experiment.

イロト 不得 トイヨト イヨト 二日

Currents Resting potential Conductances

Conductances

- The ionic conductances are variable which makes the neuronal activity complex (if they weren't, things would be very simple)
- The conductance variability is due to the so called gates large particles in the neural membrane that open or close a particular ionic channel. The gates may be sensitive to:
 - $\bullet\,$ Membrane voltage voltage gated channels e.g. Na^+and K^+
 - $\bullet\,$ Secondary messengers (intracellular agents) e.g. Ca^{2+}-gated K^+ channels
 - Extracellular agents (neurotransmitters and neuromodulators) e.g. AMPA, GABA, NMDA receptors in synapses.
- Gating is a stochastic process, nevertheless since there are lots of channels on each membrane piece, globally gating can be averaged and approximated via a differential equation

イロト イボト イヨト

Currents Resting potential Conductances

Conductances

Variable conductances can be employed to our equation in a following manner:

$$I = \overline{g}p(V - E)$$

where \overline{g} is the maximal conductance (with every channel open) and $p \in [0, 1]$ is average proportion of open channels. *E* is the reverse potential, that is the potential at which the current reverses direction. If the channels are selective to a single ionic species (which is the case), then *E* is the Nerst potential of that ion.

・ 同 ト ・ ヨ ト ・ ヨ ト

Currents Resting potential Conductances

Voltage gated currents

- The most important for neural excitability a the voltage gated currents, that is currents dependent on conductances which themselves depend on membrane voltage.
- These conductances may be
 - deactivated (the channels are closed)
 - activated (the ions may flow freely)
 - inactivated (another process closes the channel)
 - deinactivated (released from inactivation)
- If the channel can only be activated and deactivated it results in *persistent* (long lasting) currents
- The channel that can be inactivated results in *transient* (short lasting) currents.

Currents Resting potential Conductances

Voltage gated currents

Figure: Channels that can be activated and inactivated.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 3 14/37

Currents Resting potential Conductances

Voltage gated currents

- Activation and inactivation are a processes that take some time, historically the activation is denoted with variable m (or n) while the inactivation is denoted with h.
- Consequently the total conductance of a channel is expressed

$$p=m^ah^b$$

where a and b are numbers of activation and inactivation gates per channel (activities of gates are assumed to be independent)

- If the channel has no inactivation gates then b = 0.
- The only thing needed to have a decent model of neuronal membrane is to investigate the activation and inactivation dynamics!

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Hodgkin-Huxley neuron

- The pioneering measurements leading to fairly full description of neuronal excitability were conducted by Alan Lloyd Hodgkin and Andrew Huxley in 1952.
- In 1963 they both received Nobel Prize in Physiology or Medicine for the work.
- They've worked on a giant squid axon a particularly convenient neuronal cell to study due to it's large size.
- They managed to measure all the parameters required to formulate a complete model of neuronal membrane, and that could simulate excitability and spike generation mechanisms.

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Activation kinetics

• The averaged activation can be approximated with a following differential equation

$$\frac{dm(V,t)}{dt} = (m_{\infty}(V) - m)/\tau_m(V)$$

- $m_{\infty}(V) \in [0, 1]$ is the asymptotic steady state activation function. That is with voltage V activation approaches $m_{\infty}(V)$.
- $\tau_m(V)$ is the rate at which *m* converges to its asymptotic value.

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Hodgkin and Huxley came up with a set of equations:

$$C_m \frac{dV}{dt} = -g_L(V - E_L) - g_{Na}m^3h(V - E_{Na}) - g_Kn^4(V - E_K)$$
$$\frac{dm}{dt} = (m_\infty(V) - m)/\tau_m(V)$$
$$\frac{dn}{dt} = (n_\infty(V) - n)/\tau_n(V)$$
$$\frac{dh}{dt} = (h_\infty(V) - h)/\tau_h(V)$$

Where C_m is the membrane capacitance (typically $1\mu F/cm^2$), $g_L = 0.3 = mS/cm^2$ is the leak conductance and $E_L - 55.4mV$ is the leak potential, $g_{Na} = 120mS/cm^2$, $E_{Na} = 55mV$, $g_K = 36mS/cm^2$, $E_K = -77mV$ are conductances and Nerst potentials of sodium and potassium respectively

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Hodgkin and Huxley came up with a set of equations:

$$C_m \frac{dV}{dt} = -g_L(V - E_L) - g_{Na}m^3h(V - E_{Na}) - g_Kn^4(V - E_K)$$
$$\frac{dm}{dt} = (m_\infty(V) - m)/\tau_m(V)$$
$$\frac{dn}{dt} = (n_\infty(V) - n)/\tau_n(V)$$
$$\frac{dh}{dt} = (h_\infty(V) - h)/\tau_h(V)$$

Where C_m is the membrane capacitance (typically $1\mu F/cm^2$), $g_L = 0.3 = mS/cm^2$ is the leak conductance and $E_L - 55.4mV$ is the leak potential, $g_{Na} = 120mS/cm^2$, $E_{Na} = 55mV$, $g_K = 36mS/cm^2$, $E_K = -77mV$ are conductances and Nerst potentials of sodium and potassium respectively

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

m, *n* and *h* are gating variables, $m_{\infty}(V)$, $n_{\infty}(V)$, $h_{\infty}(V)$ are steady state activation functions, $\tau_m(V)$, $\tau_n(V)$, $\tau_h(V)$ are volatge dependent convergence rates. These functions have been estimated empirically and approximated by sigmoidal and unimodal exponential functions.

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: Steady state activation functions in Hodgkin-Huxley model (horizontal axis stands for voltage)

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: Voltage dependent convergence rates in Hodgkin-Huxley model (horizontal axis stands for voltage)

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Action potential

- What happens to the Hodgkin-Huxley model when some stimulating current is applied to the membrane?
- The current causes the voltage to jump according to $V \rightarrow V_{\rm rest} + IR_{\rm inp}.$
- Voltage changes alter ionic conductances, consequently m, nand h variables start to follow their new asymptotic values $m_{\infty}(V), n_{\infty}(V), h_{\infty}(V)$ with rates $\tau_m(V), \tau_n(V), \tau_h(V)$.
- Sodium Na⁺has the fastest kinetics, therefore initial voltage jump quickly increases Na⁺conductance. If the jump was strong enough it may ignite a self perpetuating process, since the inflow of sodium increases membrane polarization (further increase in V) !

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Action potential

- If the process ignites, then membrane voltage quickly jumps up to say 50*mv* before other gates start their action.
- After a while sodium inactivation catches up, and inactivates the sodium channel.
- In the mean while, slow potassium activation variable *n* grows, causing huge outflow of K⁺ions. Consequently membrane voltage falls down below the rest state, that is it hyperpolarizes.
- Next the potassium channel slowly inactivates, and the membrane gets back to the rest state.
- The whole process is called an action potential or a spike (due to a sudden spike like increase in membrane potential).

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: A spike in HH model. In response to a 1ms stimulation of 10pA, the neuron ignites a huge jump in the membrane voltage.

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: Na⁺ and K⁺ conductances during a spike (time scale as on previous figure).

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: Activation and inactivation variables during a spike (time scale as on previous figure). Blue and red are Na⁺activation and inactivation respectively, green is the slow K^+ activation.

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: Neuronal voltage (HH model) in response to a stimuli depicted with green line. Note the post inhibitory spike!

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: Ionic conductances of Na⁺and K⁺in HH model in response to a stimuli from previous figure.

<ロト < 同ト < ヨト < ヨ

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Figure: Activation and inactivation variables in HH model in response to a stimuli from previous figure.

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

After spike excitability

Figure: Magnitude of stimulation required to fire another spike as a function of time from the previous spike inducing stimulus.

Remarks

lons and the membrane Hodgkin-Huxley neuron Recap Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Originally Hodgkin-Huxley equation was formulated as follows:

$$C_m \frac{dV}{dt} = -g_L(V - V_L) - g_{Na}m^3h(V - V_{Na}) - g_K n^4(V - V_K)$$

$$\frac{dm}{dt} = \alpha_m(V)(1 - m) - \beta_m(V)m$$

$$\frac{dh}{dt} = \alpha_h(V)(1 - h) - \beta_h(V)h$$

$$\frac{dn}{dt} = \alpha_n(V)(1 - n) - \beta_n(V)n$$
(1)

where (see next slide)

<ロト < 同ト < ヨト < ヨ

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Remarks continued

$$\begin{split} \alpha_n(V) &= 0.01 \frac{10 - V}{e^{\frac{10 - V}{10}} - 1}, & \beta_n(V) &= 0.125 e^{\frac{-V}{80}}, \\ \alpha_m(V) &= 0.1 \frac{25 - V}{e^{\frac{25 - V}{10}} - 1}, & \beta_m(V) &= 4e^{\frac{-V}{18}}, \\ \alpha_h(V) &= 0.07 e^{\frac{-V}{20}}, & \beta_h(V) &= \frac{1}{1 + e^{\frac{30 - V}{10}}} \end{split}$$

and typically:

$$\begin{array}{ll} E_k = -12mV, & E_{Na} = 120mV, & E_L = 10.6mV, \\ g_K = 36mS/cm^2, & g_{Na} = 120mS/cm^2, 7 & g_L 7 = 0.3mS/cm^2, \\ C = 1\mu F/cm^2 \end{array}$$

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Remarks continued

The ionic potentials were shifted, so that membrane rest potential would be at 0mV. Instead we are adopting the modern formulation, in which the rest potential is at -65mV. Also note that

$$\begin{split} n_{\infty} &= \alpha_n / (\alpha_n + \beta_n), & \tau_n &= 1 / (\alpha_n + \beta_n) \\ m_{\infty} &= \alpha_m / (\alpha_m + \beta_m), & \tau_m &= 1 / (\alpha_m + \beta_m) \\ h_{\infty} &= \alpha_h / (\alpha_h + \beta_h), & \tau_h &= 1 / (\alpha_h + \beta_h) \end{split}$$

(remember to shift the voltage in expressions for α and β before trying to implement this model!)

イロト イポト イラト イラト

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Spatial propagation of spikes

- Everything derived up until now relates to infinitesimal piece of neuronal membrane and time evolution of its potential
- However neurons are spacial entities (some axons can be up to a meter long!)
- There are two approaches available for simulation of the whole neuron:
 - Via the cable equation (most adequate, but computationally demanding)
 - Via compartments connected by conductances (faster but less accurate).

イロト イポト イラト イラト

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Cable equation

The cable equation adds an extra term to the voltage/current relation. The term is proportional to the second order partial derivative of V with respect to spacial variable x.

$$C\frac{dV}{dt} = \frac{a}{2R}\frac{\partial^2 V}{\partial x^2} + I - I_K - I_{Na} - I_L$$
(2)

Where a (cm) is the radius of the cell (dendrite,axon etc...), and R $\Omega \cdot cm$ is intracellular resistivity. It is easy to understand that equation: it basically says that the rate of change of the membrane at some point (dV/dt) depends on what happens at that particular point $I - I_K - I_{Na} - I_L$, but also depends on the rate of change of the difference between the voltage at current point and a neighboring point.

Activation kinetics Hodgkin-Huxley equation Action potential Spatial propagation of spikes

Multi compartment model

- Another somewhat easier approach is to simulate a neuron as a set of compartments.
- Each compartment has the dynamics defined by the Hodgkin-Huxley equation, with an extra current coming from neighboring comparments
- Eventually the equation is:

$$C \frac{dV}{dt} = -I(V, t) + \sum_{n \in \text{neighbors}} g_n(V_n - V)$$

where g_n is the conductance from neighboring compartment n and V_n is the value of voltage at that compartment.

- Neurons exhibit very peculiar electric activity. The charge is not transferred directly (like in copper wires), but instead causes inward and outward ionic currents across the membrane.
- Depolarization of the membrane propagates along neuronal fibers. The propagation is rather slow of order 1m/s unlike metallic conductors where voltage changes propagate at nearly speed of light.
- The mechanism is active, that is whenever input signal is strong enough, the spike generation process is ignited which amplifies the action potential.
- The first mathematical description of action potentials were introduced in 1952 by Alan Lloyd Hodgkin and Andrew Huxley.

・ 同 ト ・ ヨ ト ・ ヨ ト