
1d systems
Phase line analysis

Bifurcations
Quadratic integrate and fire neuron

Recap

Mathematical Foundations of Neuroscience -
Lecture 4. One dimensional systems.

Filip Piękniewski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Toruń, Poland

Winter 2009/2010

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 4 1/49

http://www.mat.umk.pl/~philip/


1d systems
Phase line analysis

Bifurcations
Quadratic integrate and fire neuron

Recap

Simplifying neural models
General 1d systems
Linear systems

1d systems

To understand more complex multi-dimensional systems of ordinary
differential equations it is valuable to first study one dimensional
systems. Even though a single variable restricts the dynamic be-
havior of the system significantly, one dimensional systems exhibit a
couple of interesting regimes like

bistability (multistability)
hysteresis
slow transitions

They are also valuable as a simplest case to study bifurcations.
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Simplifying neural model

How can one dimensional be relevant from neuroscientific point of
view?

One can strip Hodgkin-Huxley like neural models from
conductances and assume only one ionic species is relevant
One can assume that the activation kinetics of certain ions is
instantaneous, that is the gating variable achieves its
asymptotic value instantly
Since activations and inactivations have different timescales,
one dimensional systems are valuable to study fast currents in
short timescales, where it can be assumed that all other
parameters are constant
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Let us depart from the Hodgkin-Huxley model:

Cm
dV
dt = −gL(V − EL) − gNam3h(V − ENa) − gKn4(V − EK)

dm
dt = (m∞(V ) − m)/τm(V )

dn
dt = (n∞(V ) − n)/τn(V )

dh
dt = (h∞(V ) − h)/τh(V )

Lets assume that all parameters are normalized (e.g. Cm = 1 etc.).
Furthermore lets assume there is only one ionic channel with only
one gating variable.
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We then arrive with:

dV
dt = −gL(V − EL) − gp(V − E )

dp
dt = (p∞(V ) − m)/τ(V )

We can assume that the gating variable is much faster than voltage.
In this case τ(V ) is very small in the entire relevant voltage range.
In such case we can skip the second equation, and write p = p∞(V ).
We end up with one dimensional system:

dV
dt = −gL(V − EL) − gp∞(V )(V − E )
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By changing parameters E and the character of p (either activation
or inactivation) we can obtain four models

Inward current outward current
activation
gating

INa,p (persistent sodium
model)

IK

inactivation
gating

Ih IKir (inverse rectifying)

We will use persistent sodium with leak as an example.
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General 1d systems
The general 1d system can be expressed

dy(t)
dt = F (y(t), t)

If the right hand side of the equation does not depend on
time, the system is called autonomous. In other case the
system is called nonautonomous (such systems are generally
harder to deal with).
Each solution to the equation y(t) departing from some initial
condition y0 (that is y(t0) = y0) is called a trajectory.
The mapping φ(y0, t) which takes some initial condition and
a time value and returns the value of solution departing from
y0 at time t is called a flow.
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Linear systems
In the general case the solutions of 1d systems might not exist for
every value of t (trajectories might diverge). It is also difficult to
find solutions analytically. There are clever methods of solving dif-
ferential equations, but they only work for certain special cases.

Nevertheless there are a couple of important special cases which can
be solved analytically. These are linear equations of the form

dy(t)
dt = Ay(t) + B

It is easy to verify (via differentiation) that the solutions are:

y(t) = −
B
A +

(
B
A + y0

)
· eA(t−t0)
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When t = t0 we have

y(t0) = −
B
A +

(
B
A + y0

)
· e0 = −

B
A +

B
A + y0 = y0

for t > t0

dy(t)
dt =

d
dt

(
−

B
A +

(
B
A + y0

)
· eA(t−t0)

)
=

=

(
B
A + y0

)
AeA(t−t0) = A

(
−

B
A +

(
B
A + y0

)
eA(t−t0) +

B
A

)
=

= A
(
−

B
A +

(
B
A + y0

)
eA(t−t0)

)
+ B = Ay(t) + B

QED.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 4 9/49



1d systems
Phase line analysis

Bifurcations
Quadratic integrate and fire neuron

Recap

Simplifying neural models
General 1d systems
Linear systems

In particular equation

dy(t)
dt = −Ay(t)

has a simple analytic solution

y(t) = y0e−A(t−t0)

which can be simulated efficiently

y(t + 1) = α · y(t)

where α = e−Aτ is precomputed (τ is the time step)
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Another important special case is the so called homogeneous linear
equation of the form

dny(t)
dtn + A1

dn−1y(t)
dtn−1 + . . .+ An−1

dy(t)
dt + Any(t) = 0

Euler noticed that substituting y(t) = ezt leads to a following ex-
pression:

znezt + A1zn−1ezt + . . .+ An−1z1ezt + Anezt = 0

Dividing by ezt yields

zn + A1zn−1 + . . .+ An−1z + An = 0

the so called characteristic polynomial. Now assume zi is a root of
the characteristic polynomial.
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In such case ezi x is a solution of the differential equation.
Since the equation (and the differential operator) are linear,
then functions ezi x for all roots zi of characteristic equation
form a linear basis and any solution is a linear combination.
In the general case if the root zi has multiplicity m then for
any k ∈ {1, 2, ...,m − 1} xkezi x is a solution (this is much
harder to see!!!), and any linear combination of such solutions
is also a solution.
If the coefficients of the equation are real, then roots of the
characteristic equation are complex conjugates. In such case
one can obtain the real basis of solutions by taking
ui =

ezi x+ezi x

2 = and vi =
ezi x−ezi x

2i
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Phase line analysis

The basic factor determining the behavior of trajectories is the
right hand side function F (y(t)). Lets assume for a moment
that it does not depend on time.
Since y(t) ∈ R the domain of F is R. We will call the real
line a this context a phase line (which should not be confused
with the time line that is the domain of t).
The phase line contains all the possible states of the system
(which in this case are real numbers), but in general a phase
space can be multidimensional. On the contrary the domain
of t is always R, at least for ODE.
Plotting F (y) for y ∈ R gives a whole lot of information,
which we will learn to read.
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Equilibria

First of all, note that if for some yc F (yc) = 0, we have

dy
dt = F (yc) = 0

and consequently a trajectory that originates in yc remains
constant forever (since its derivative is zero)!
We call such a yc an equilibrium. As we will soon see, there
are different types of equilibria.
If F is positive (negative) for some point, the trajectory at
that point will be increasing (decreasing respectively)
We will assume that F is a continuous and differentiable
function. How can F look like near yc ?
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Equilibria

There are five qualitatively different cases in which F (yc) = 0
1 F ′(yc) > 0
2 F ′(yc) < 0
3 F ′(yc) = 0 and F ′′(yc) = 0
4 F ′(yc) = 0 and F ′′(yc) > 0
5 F ′(yc) = 0 and F ′′(yc) < 0

The first two we will call hyperbolic while the latter three
non-hyperbolic. The last two we will also call degenerate.
There is also possibility that the second derivative is not
defined at all. We will skip these pathological cases for now.
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Figure: F ′ < 0 - stable attracting hyperbolic equilibrium
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Figure: F ′ > 0 - unstable repelling hyperbolic equilibrium
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Figure: F ′ = 0, F ′′ = 0 - semi stable non-hyperbolic equilibrium
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Figure: F ′ = 0, F ′′ = 0 - semi stable non-hyperbolic equilibrium
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Figure: F ′ = 0, F ′′ < 0 - stable degenerate non-hyperbolic equilibrium
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Figure: F ′ = 0, F ′′ > 0 - unstable degenerate non-hyperbolic equilibrium
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Simple 1d systems can exhibit interesting phenomena
A system can have a multiple stable equilibria (multi -
stability). In particular two stable equilibria lead to bistability
When a system is (multi) bistable, it can be pushed by some
input stimulus and rest at one of the equilibria. Then it could
be pushed again into different stable equilibrium. In a sense,
the system exhibits memory. This phenomenon is called
hysteresis.
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Figure: Bistability. Function F denoted in red is plotted such that abscissa is
vertical. In blue are plotted sample trajectories with time on the horizontal axis.
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Figure: Hysteresis in INa,p (persistent sodium model). Small input current
causes the model to jump into excited state (higher stable equilibrium). Since
the model lacks inactivation or potassium, the activation is persistent. Larger
negative current can force the system back into the rest equilibrium.
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Phase portraits

Phase portraits are a convenient way to qualitatively describe
properties of the dynamical system
One begins the construction of a phase portrait with the plot
of right hand side function F
Then one finds its roots, that is the equilibrium points. By
looking at the plot one can easily verify the type of
equilibrium point
Lastly one can determine attraction domains and convergence
rates
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Figure: Phase portrait
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Topological equivalence

Two dynamical systems with essentially identical phase
portraits behave in similar ways. The rate of convergence of
certain trajectories may differer, nevertheless there is the same
structure of equilibria and attraction domains.
The keyword here is essentially identical. What does this
mean?
We will assume two phase portrait essentially identical when
there exist continuous, invertible mapping from one to the
other phase line that preserves all equilibria and attraction
domains
Two systems with topologically equivalent phase portraits we
will call equivalent
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Figure: Equivalent phase portraits. Note the number, order and type of
equilibria remains intact. The respective attraction domains may get stretched
but they never vanish completely.
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Figure: Non-equivalent phase portraits. Either the number or type of equilibria
doesn’t match. Some attraction domains may vanish.
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Local equivalence

The total equivalence of the whole phase portrait is a rather
strong notion
Many real world systems are not totally equivalent, but locally
their phase portraits look alike. In particular biological
systems like neurons can be equivalent in biologically plausible
voltage range, but may differ at extreme voltages
In such case it is useful to introduce local equivalence in
which case the continuous mapping mentioned a few slides
earlier is restricted to only some subsets of the phase line
It is particularly useful to associate a dynamical system in the
vicinity of hyperbolic equilibrium with its linear approximation.
Under certain assumptions such association can be complete,
that is linear systems completely determines the systems
behavior sufficiently close to the equilibrium
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Hartman-Grobman Theorem

Hartman-Grobman Theorem states that near a hyperbolic
equilibrium the system is equivalent to its linearization
The equivalence here is somewhat stronger: not only
trajectories follow the same directions, but sufficiently near
the equilibrium trajectories of original and linear systems are
indistinguishable.
Formally the theorem states that there is a homeomorphism
working from some open subset E to some open subset L
(both containing the equilibrium) which for some time
segment [0,T ] continuously transforms each trajectory
f (xe , t), xe ∈ E , t ∈ [0,T ] into fl(xl , t), xl ∈ L, t ∈ [0,T ].
Therefore unless the equilibrium is non-hyperbolic, it is
sufficient to study linear system. We will get back to
Hartman-Grobman Theorem with two dimensional systems.
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Linearization

Figure: Linear approximation of the system at the equilibrium.
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Figure: Linear approximation of the system at the equilibrium. The trajectories
corresponding to the linear system are marked in black, whereas those of the
original system are blue. Sufficiently close to the equilibrium both black and
blue trajectories look the same.
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Bifurcations

Now lets assume, that the right hand side function F (y(t), I)
depends on some parameter, say I
By changing the parameter, the shape of the function can
change, and consequently the phase portrait might undergo a
qualitative change
Such an event, which transforms one phase portrait into
topologically non-equivalent other is called a bifurcation.
Bifurcations are in the focus of our interest, since as we will
se, they are responsible for various dynamical behaviors
A prominent example of a bifurcation in 1d systems is the
saddle node bifurcation in which stable and unstable
equilibrium annihilate in a continuous manner
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Saddle node bifurcation
How to check is the system dy

dt = F (y , I) is at a bifurcation with
values ysn, Isn? It has to satisfy three conditions:

Non hyberbolicity (at ysn):

∂F (y , Isn)
∂y = 0

Non degeneracy (at ysn):

∂2F (y , Isn)
∂y2 6= 0

Traversality (at Isn):

∂F (ysn, I)
∂I 6= 0
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Saddle node

non-hyperbolic hyperbolic hyperbolic

non-degenerate degenerate degenerate

traversal not traversal not traversal
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Figure: Saddle node bifurcation
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Figure: Saddle node bifurcation

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 4 38/49



1d systems
Phase line analysis

Bifurcations
Quadratic integrate and fire neuron

Recap

Topological equivalence
Hartman-Grobman Theorem
Saddle node bifurcation
Slow transition
Simple interpretation

Figure: Saddle node bifurcation
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Figure: Saddle node bifurcation
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Slow transition

The behavior of trajectories may signal that the system is near
a bifurcation
One of such symptoms is the slow transition
When the system is near the saddle node bifurcation,
trajectories passing the so called attractor ruins are being
slowed down
Even though the attracting equilibrium does not exist, its
ghost manages to keep the trajectories near for a while, before
they follow to another attractor
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Attractor ruins

Figure: Slow transition. The attractor ruins, though formally not an
equilibrium point significantly slows down trajectories.
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Figure: Mechanistic interpretation of the bifurcation. The red plot is minus
integral of the blue function (shifted a bit down for better readability). The ball
rolling on the integral follows the trajectories of the dynamical system.
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Figure: Mechanistic interpretation of the bifurcation. The red plot is minus
integral of the blue function (shifted a bit down for better readability). The ball
rolling on the integral follows the trajectories of the dynamical system.
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Figure: Mechanistic interpretation of the bifurcation. The red plot is minus
integral of the blue function (shifted a bit down for better readability). The ball
rolling on the integral follows the trajectories of the dynamical system.
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Note that the simplest possible system that may undergo
saddle-node bifurcation is

dy(t)
dt = y(t)2 + a

so that the right hand side function F is a square parabola,
and parameter a controls the shift of the curve over the axis.
Such a simplest equation that is able to reproduce a certain
bifurcation is sometimes called a topological normal form for
that bifurcation. Surprisingly the normal form for saddle node
bifurcation is one of the simplest spiking models!
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The model defined

dV (t)
dt = V (t)2 + I

where I is a parameter (input current).
The equation has an analytic solution

V (t) = 1
c(I) − t

for some constant c(I), so the trajectories diverge at c(I) to
infinity. Infinite membrane potential does not make any sense,
therefore we will asume that after reaching certain value Vpeak
the voltage variable is reset V = 0.
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Figure: It turns out that quadratic integrate and fire model, even though very
simple, can fairly well reproduce neuronal excitability.
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1d systems are the simplest possible equations, nevertheless
they exhibit many important dynamical features
Some neural models can be simplified into a 1d system. The
description in such case is not complete, but sufficient to
study short timescale dynamics where slow variables can be
assumed constant
1d systems undergo bifurcations, qualitative changes to the
phase portrait which result in different dynamics
Bifurcation is a very universal concept. Many different
systems behave in similar manner because they undergo the
same bifurcation. Many similar systems behave differently
because they rest in different phase portrait regimes
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