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Introduction

We know some of the underlying geometrical mechanisms
that are responsible for changing neuronal state from resting
to spiking and vice versa
It is the right moment to summarize this data and study in
more detail what classes of neuronal excitability are possible.
We will use INa,p - IK model as an example of some of the
concepts.
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Methodology

There are several ways of injecting current in the neuron:
pulse, ramp, step and zap and others.
Depending on the input waveform the neuron can exhibit
different dynamical behaviors
One can imagine that a short pulse pushes the state of the
system into some point in the phase space, leaving the phase
portrait intact
The ramp slowly changes the phase portrait, possibly allowing
the state to accommodate
The step suddenly changes the phase portrait leaving the
state in the place of its previous steady node, which possibly
becomes the attraction domain of a cycle or so.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 8 3/40



Introduction
Hodgkin Classification

Integrators and resonators
Recap

Methodology

Definition
A threshold is a minimal value of a short pulse of current that
makes the neuron fire.

Definition
A rheobase is a minimal value of an infinite duration step of
current that makes the neuron fire.

As we shall se later, both the threshold an the rheobase might not
be reasonably defined for some neurons.
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Hodgkin Classification

The first property used to classify neuronal responses was the
frequency/current relation in responce to a step input current
This classification was introduced by Alan Lloyd Hodgkin (the
one from Hodgkin-Huxley equation) in 1948
He was able to identify three classes

class I - the frequency of spikes can be arbitrarily low
class II - there is a cutoff frequency below which the neuron
seizes to spike
class III - the neuron is excitable, but only spikes in response to
a sudden current increase and remains quiescent no matter
how large steady current is applied to the membrane
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Figure: Class I excitability.
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Figure: Class I excitability.
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Figure: Frequency/current relation of class I excitability.
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Class I

It is quite easy to explain class I excitability in terms of phase
plane geometry.
Class I excitable neurons are precisely those which undergo a
saddle node on invariant circle bifurcation, in which case the
frequency/current curve scales as the square root of the
bifurcation parameter
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Class II

Class II are exactly those neurons that have certain cut-off
frequency and their frequency/current curve has a dicontinuity
From our previous considerations we know that neurons that
undergo any other bifurcation than the saddle node on
invariant circle belong to this class
We can see the weak point of Hodgkin classification - many
interesting dynamical regimes belong to class II without being
explicitly pointed out.
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Figure: Class II excitability.
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Figure: Class II excitability.
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Figure: Frequency/current relation of class II excitability.
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Class III

Class III neuron is excitable, but only spikes in response to a
sudden current increase and remains quiescent no matter how
large steady current is applied to the membrane
The ramp current does not induce spiking, even if the current
becomes very large
This phenomenon seems to be somewhat strange, since it
doesn’t seem to fit into any bifurcation we know
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Figure: Class III excitability in response to a ramp and a set of steps.
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Figure: Class III excitability in response to a ramp and a set of steps.
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Class III

Class III can be simulated with INa,p - IK model with
parameters: Cd = 0.03, EL = −80, gL = 5, gNa = 13, gK = 6,
ENa = 60, EK = −90, τ(V ) = 0.16 and
n∞(V ) = 1/

(
1 + e(−65−V )/2)

As revealed by the phase plane analysis, this model does not
undergo any bifurcation of the stable node for a wide range of
input currents.
It spikes right after the step, since stable node instantly
changes its position and the state while converging to the new
equilibrium position makes a long excursion near the right
knee of the V nullcline, thus exhibiting a spike.
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Figure: Class III excitability in INa,p - IK for I = 0, 50, 100.
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Figure: Class III excitability in INa,p - IK for I = 0, 50, 100.
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Figure: Class III excitability in INa,p - IK for I = 0, 50, 100.
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Integrators and resonators

Hodgkin classification, though useful, misses some of the
important neuronal properties (class II is very rich)
It is more adequate to focus on the geometrical aspects of
bifurcation, in this case two lines of division emerge:

Bistable and monostable neurons (whether or not neuron has a
range of currents at which two dynamical regimes are possible)
Integrators and resonators (whether or not the neuron exhibits
oscillations)

Bistability can be found by increasing and decreasing ramps
Oscillations can be found by injecting zap current, that is
sinusoidal current of increasing frequency
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Figure: The zap current. The frequency of input steadily increases.
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Monostable integrators

Monostable integrators:
Undergo the saddle node on invariant circle bifurcation
Prefer high frequency excitatory input
Never spike in response to inhibition
Have a decreasing impedance profile (response to zap current)
Do not exhibit subthreshold oscillations
Have a well defined threshold and the rheobase
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Figure: Monostable integrator undergoes a saddle node on invariant circle
bifurcation.
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Figure: Monostable integrator undergoes a saddle node on invariant circle
bifurcation.
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Figure: Monostable integrator prefers a high frequency excitatory input but
fails to respond on an inhibitory input.
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Figure: Monostable integrator prefers a high frequency excitatory input but
fails to respond on an inhibitory input.
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Figure: Monostable integrator has a decreasing response to the zap current
(impedance profile).
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Bistable integrators

Bistable integrators:
Undergo the saddle node bifurcation
Prefer high frequency excitatory input
Never spike in response to inhibition
Have a decreasing impedance profile (response to zap current)
Do not exhibit subthreshold oscillations
Have a well defined threshold and the rheobase
Can be turned on by excitatory current and turned off by
inhibitory current
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Figure: Bistable integrator undergoes a saddle node bifurcation.
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Figure: Bistable integrator undergoes a saddle node bifurcation.
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Figure: Bistable integrator integrator prefers a high frequency excitatory input
but fails to respond on an inhibitory input.
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Figure: Bistable integrator integrator prefers a high frequency excitatory input
but fails to respond on an inhibitory input.
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Figure: Bistable integrator has a decreasing response to the zap current
(impedance profile).
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Monostable resonators

Monostable resonators:
Undergo the supercritical Andronov-Hopf bifurcation
Have a frequency preference (resonant frequency)
Can spike in response to inhibition
Have a non monotonic impedance profile (response to zap
current)
Do exhibit damped subthreshold oscillations
May not have a well defined threshold and the rheobase
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Figure: Monostable resonator undergoes a supercritical Andronov-Hopf
bifurcation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 8 27/40



Introduction
Hodgkin Classification

Integrators and resonators
Recap

Monostable integrators
Bistable integrators
Monostable resonators
Bistable resonators
From integrators to resonators

0
0.2

0.4
0.6

0.8 0 50 100 150 200

90

80

70

60

50

40

30

20

10

0

tn

V

Figure: Monostable resonator undergoes a supercritical Andronov-Hopf
bifurcation.
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Figure: Monostable resonator has a frequency preference. Either excitatory
and inhibitory input of the right frequency causes a potent response.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 8 28/40



Introduction
Hodgkin Classification

Integrators and resonators
Recap

Monostable integrators
Bistable integrators
Monostable resonators
Bistable resonators
From integrators to resonators

0 20 40 60 80 100 120 140 160 180 200
100

90

80

70

60

50

40

30

V

Time (ms)

 

 
Neuron response
Input current

Figure: Monostable resonator has a frequency preference. Either excitatory
and inhibitory input of the right frequency causes a potent response.
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Figure: Monostable resonator has the highest response to the zap current at a
particular frequency range, which corresponds to the frequency of oscillations
near the stable focus.
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Bistable resonators

Bistable resonators:
Undergo the subcritical Andronov-Hopf bifurcation
Have a frequency preference (resonant frequency)
Can spike in response to inhibition
Have a non monotonic impedance profile (response to zap
current)
Do exhibit damped subthreshold oscillations
May not have a well defined threshold and the rheobase
Can be turned on and off by a resonant/non resonant input.
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Figure: Bistable resonator undergoes a subcritical Andronov-Hopf bifurcation.
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Figure: Bistable resonator undergoes a subcritical Andronov-Hopf bifurcation.
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Figure: Bistable resonator has a frequency preference. Either excitatory and
inhibitory input of the right frequency causes a potent response. Bistability
results in an interesting phenomenon - the neuron can be switched on by a
certain input and then turned off, by a non resonant input.
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Figure: Bistable resonator has a frequency preference. Either excitatory and
inhibitory input of the right frequency causes a potent response. Bistability
results in an interesting phenomenon - the neuron can be switched on by a
certain input and then turned off, by a non resonant input.
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Figure: Bistable resonator has the highest response to the zap current at a
particular frequency range, which corresponds to the frequency of oscillations
near the stable focus.
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Short summary

Monostable Bistable

Resonator Supercritical
Andronov-Hopf

Subcritical
Andronov-Hopf

Integrator Saddle node on
invariant circle

Saddle node
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Short summary
Integrators Resonators

Bifurcation SNIC SN Subcritical AH Supercritical AH

Excitability Class I Class II Class II Class II

Oscillations No Yes

Frequency
preference

No Yes

Coexistance
of resting and
spiking

No Yes Yes No

Threshold
and rheobase

Well defined Not well defined
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From integrators to resonators

Integrators are separated from resonators by the
Bogdanov-Takens bifurcation.
Neurons which are near the bifurcation can exhibit interesting
mixed regimes, like being an integrator at some currents and
resonator at some other currents.
Such mixed type neurons are rare, but not negligible.
The wierd mixed behavior can be observed in INa,p - IK model
with Cd = 1, EL = −79.42, gL = 8, gNa = 20, gK = 10,
ENa = 60, EK = −90, τ(V ) = 0.16 and
n∞(V ) = 1/

(
1 + e(−31.64−V )/7)
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Figure: A neuron (INa,p - IK model parameters as above) near Bogdanov-Takens
bifurcation has a stable node and a focus. It therefore exhibits two regimes,
when the state rests at the focus, the neuron is a resonator. If the state rests in
the stable node, the neuron becomes and integrator.
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Figure: Phase plane of the INa,p - IK model near Bogdanov-Takens bifurcation.
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Figure: Transition from resonator to integrator.
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Recapitulation

Neurons can classified based on their frequency/current curve
- Hodgkin classes
A somewhat more useful classification takes into account
bi/monostability and the existence of oscillations
Based on that neurons can be divided into mono/bi stable
integrators and resonators
Bogdanov-Takens bifurcation separates integrators from
resonators. Neurons near the bifurcation can exhibit features
of both species.
Saddle-node homoclinic orbit bifurcation separates monostable
and bistable integrators.
Bautin bifurcation separates monostable and bistable
resonators.
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