Mathematical Foundations of Neuroscience - Sample Questions Lecture 5-2d systems

Filip Piękniewski

November 2, 2009

Questions marked with * are not obligatory.

1. Show than any n-dimensional non-autonomous ODE can be expressed as $n+1$ dimensional autonomous ODE. Show that any 1 dimensional n 'th-order ODE can be expressed as first order n dimensional ODE.
2. Given the vector field below, try to sketch its nullclines and some trajectories. Can you spot any equilibrium points?

3. Find the eigenvalues of the matrix:

$$
A=\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 1 \\
-5 & 2
\end{array}\right]
$$

4. Find the eigenvectors of the above matrices.
5. Determine the nullclines and draw the phase portrait of the system

$$
\begin{aligned}
& \frac{d x}{d t}=x-x^{3} / 3-y \\
& \frac{d y}{d t}=b y
\end{aligned}
$$

where $b>0$ is a parameter.
6. Show that

$$
\left[\begin{array}{c}
v(x) \\
w(y)
\end{array}\right]=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}
$$

is the solution of 2d linear ODE $\frac{d \vec{x}}{d t}=A \vec{x}$, where λ_{1} and λ_{2} are eigenvalues of matrix A and v_{1}, v_{2} are the corresponding eigenvectors.
7. Characterize the possible hyperbolic equilibria in 2 d system.
8. How many equilibrium points can a system

$$
\begin{aligned}
& \frac{d x}{d t}=W_{n}(x)+y \\
& \frac{d y}{d t}=x-y
\end{aligned}
$$

have, where W_{n} is an n-th degree polynomial. *

