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Abstract. Short range excitation, long range inhibition sometimes re-
ferred to as mexican hat connectivity seems to play important role in
organization of the cortex, leading to fairly well delineated sites of ac-
tivation. In this paper we study a computational model of a grid filled
with rather simple spiking neurons with mexican hat connectivity. The
simulation shows, that when stimulated with small amount of random
noise, the model results in a stable activated state in which the spikes
are organized into persistent blobs of activity. Furthermore, these blobs
exhibit significant lifetime, and stable movement across the domain. We
analyze lifetimes and trajectories of the spots, arguing that they can be
interpreted as basic computational charge units of the so called spike
flow model introduced in earlier work.
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1 Introduction

It is a subject of ongoing discussion of what is the elementary computational

unit of the brain, whether this important role should be attributed to a neuron

and an action potential, or rather a group of neurons, possibly a polychronous

group of spikes [1] or maybe some bigger ensemble with more complex dynamics

(microcolumn etc.). In our previous work [2,3,4,5] we studied the so called spike
flow model in which neuron-like units exchange quants of some persistent charge

(that is conserved by the dynamics), leading eventually to a winner-take-all dy-

namics and scale-free (power law) connectivity of the resulting charge transfer

graph. The study was motivated by experimental results, which showed that

functional brain networks have certain connectivity properties [6,7]. The model,

though leading to similar properties of the charge exchange graph (power law

degree distribution with exponent γ = 2), lacked exact biological interpretation

in terms of single neurons since single neuronal spikes are not persistent and fur-

thermore a single neuron cannot hold obtained spikes for later. Such a property

� This work is supported by the Polish Minister of Scientific Research and Higher
Education grant N N201 385234 (2008-2010).
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2 Filip Piekniewski

could be however attributed to larger ensembles of neurons, particularly those

having recurrent connections. In such case the local excitation can be preserved

via loopback connections (in a way, stored). In this paper we show, that a grid of

spiking neurons with short range excitation, long range inhibition stimulated via

small amount of random noise converges to a homeostatic state, in which well

delineated, persistent activity blobs emerge. Furthermore these blobs are able

to travel significant distances across the domain. The total number of blobs is

preserved (though some blobs vanish, and new are born) resembling the charge

flow of the spike flow model.

2 The model
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Fig. 1. The model consists of a grid of excitatory neurons connected to one

inhibitory neuron, which has feedback inhibitory connections. Excitatory neu-

rons excite their nearest neighbors but inhibit those at larger distances as

50 · (e−d2
− 0.5 · e−0.5·d2

) (left) where d = 0.5
�

dx2 + dy2. The grid step is

assumed to be 1.

The model consists of a grid of Eugene M. Izhikevich phenomenological sim-

ple neurons [8,9,10] governed by

�
v� = 0.04v2

+ 5v + 140− u + I

u� = a(bv − u)
(1)

the parameters are set as in the sample Matlab program in section IV of [8].

The connectivity is shown on figure 1. Neurons are organized into grid (torus

topology), connected locally with mexican hat like weights computed from 50 ·

(e−d2
− 0.5 · e−0.5·d2

) where d = 0.5
�

dx2 + dy2 is the grid distance (grid step

is assumed to be 1). The inhibitory to excitatory weight was -20, while the

excitatory to inhibitory weight was
10

# neurons . The program was implemented in

Matlab in a fashion similar to that of original E. Izhikevich script. Various sizes
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Persistent activation blobs in spiking neural networks 3

of the model were simulated, here we present figures obtained from 50x50 (1s -

1000 steps) and 80x80 (5s - 5000 steps) simulations.

In order to analyze the behavior of the blobs a following methodology was

used:

– The voltage field was thresholded at fairly high value v = −30

– The resulting bitmap was cleaned with Matlabs bwmorph1
function (single

isolated pixels were removed)

– The bitmap was decomposed with Matlabs bwlabel funtion into individual

blobs.

– Each blob was attributed a blob center in its center of mass.

– The list of existing blobs was looked up in search for nearest blobs to those

found in current iteration.

– If previously existing blob was found within the distance of 3 units from any

newly found, then the new one was resolved as the existing one that must

have moved from previous time step. In that case the center of the existing

blob gets updated (simple movement tracking).

– If there were no previously existing blobs within the range of 3 units, the

blob was pronounced a new.

– After that step if some blob was neither updated nor created, it was removed

from the list.

3 The spike flow model

The spike flow model has been introduced in [2,3] to comprehend with scale-free

connectivity that has been found in some functional fMRI based networks [6,7]

(none of the preexisting scale-free networks model was suitable to explain these

phenomena).

The model consists of nodes σi, i = 1 . . . N . Each node’s state is described

by a natural number from some fixed interval [0, Mi]. The network is built on

a complete graph in that there is a connection between each pair of neurons

σi, σj , i �= j, carrying a real-valued weight wij ∈ R satisfying the usual symme-

try condition wij = wji, moreover wii := 0. The values of wij are drawn inde-

pendently from the standard Gaussian distribution N (0, 1) and are assumed to

remain fixed in the course of the network dynamics. The model is equipped with

the Hamiltonian of the form:

H(σ̄) :=
1

2

�

i �=j

wij |σi − σj | (2)

if 0 ≤ σi ≤ Mi, i = 1, . . . , N, and H(σ̄) = +∞ in the other case. Here σ̄ denotes

of the state of the whole system. The dynamics of the network is defined as fol-

lows: at each step we randomly choose a pair of ”neurons” (units) (σi, σj), i �= j,
and denote by σ̄∗ the network configuration resulting from the original config-

uration σ̄ by decreasing σi by one and increasing σj by one, that is to say by

1 bwmorph and bwlabel are supplied with the image processing toolbox.
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4 Filip Piekniewski

letting a unit charge transfer from σi to σj , whenever σi > 0 and σj < Mj .
Next, if H(σ̄∗) ≤ H(σ̄) we accept σ̄∗ as the new configuration of the network

whereas if H(σ̄∗) > H(σ̄) we accept the new configuration σ̄∗ with probability

exp(−β[H(σ̄∗)−H(σ̄)]), β > 0, and reject it keeping the original configuration

σ̄ otherwise, with β > 0 standing for an extra parameter of the dynamics, in the

sequel referred to as the inverse temperature conforming to the usual language

of statistical mechanics.

The model results in a scale-free charge transfer graph with exponent γ = 2

(in agreement with empirical data), where the weight of each edge corresponds

to the frequency of charge exchange events that were conducted along that edge

(see [3] for details). The weak point of that model (though quite universal from

mathematical point of view) is that it did not have an exact interpretation in

terms of neurobiology, since it is not clear what the computational units and

charge quants correspond to. The present paper is aimed to provide a direct
2

link between biologically feasible spiking networks and the spike flow model.
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Fig. 2. Firing activity and the emergence of blobs on 50x50 domain. It takes some

time before the model ignites the homeostatic blob dynamics (and it depends on

the initial conditions). Nevertheless once the blobs emerge, they are persistent

and firing activity levels off at some medium magnitude. The right figure shows

the spike raster.

4 Results

At the beginning of the simulation the system fires single spikes in a unorganized

manner, reflecting the random stimulation. At some point more spikes appear

to synchronize. Eventually a number of activity blobs emerge and start to move

across the domain. Soon after the initial activity jump (see figure 2 left), the sys-

tem levels off in a homeostatic state in which the blobs are persistently emerging

and moving (see figure 3)

2 There are also other possible spike flow model interpretations, in terms of times
spent by units in a certain dynamic attractor and so on. In this paper however, we
show a rather straightforward interpretation.
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Fig. 3. 50x50 neuron domain. The voltage v is plotted on the top left sub-

figure. Bottom left shows the recovery variable u. Bottom right plot shows

the thresholded voltage value divided into individual blobs. Each blob’s cen-

ter of a mass is shown with a circle on top right subfigure. The dots are

spikes, the black lines are trajectories left by each blob as it moves. A real-

time movie of the simulation of 80x80 domain is available http://www.mat.
umk.pl/~philip/ICAISC2009/80_realtime.mov , and slowed down 8 times

http://www.mat.umk.pl/~philip/ICAISC2009/80_8xslower.mov.

The rate at which the system arrives at the homeostatic regime depends

somewhat on the initial conditions. It seems that the system requires some time

to synchronize. Artificially firing all neurons at the first step leads to faster

convergence
3
. Nevertheless once the blobs emerge, they stay forever

4
, and so the

initial conditions don’t seem to be very important for blob features.

An important question addressed in this paper is whether the blobs satisfy the

conditions which allow them to be considered as the charge packets exchanged

in the spike flow model, that is:

– Is the average blob lifetime long?

– Do blobs manage to travel long distances?

3 Artificial firing of all neurons is the initial condition used in this paper.
4 Existence of blobs is very stable in the model with local mexican hat connectivity

(presented here). However addition of random edges may introduce time periodicity
(caused by desynchronization) and cause blobs to vanish and reappear and so on.
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6 Filip Piekniewski

– Are blobs similar in sizes and activations they carry?

These questions will be answered in paragraphs below.
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Fig. 4. The distribution of timespans among the blobs on 50x50 domain. As

previously the left figure shows all timespans, while the right one only those

which persisted for more than 2ms.

Lifespan The blobs are rather persistent. As seen in figure 4 for the 50x50

domain some blobs are able to survive nearly 600ms. The distribution however

is concentrated on short living blobs. This is due to the properties of blob finding

algorithm - many blobs are only pinpointed in a single time step. This happens

frequently, whenever two or three random spikes appear nearby. Such random

fluctuations do not give a rise to a ”real” blob, but instead mess the statistics

with false positives. Since due to short lifetime these false positive blobs do not

move, we compute some statistics after throwing away blobs living less than

some threshold (2-10 time steps). Median timespan of ”true” blobs is between

40-70ms (depending on the size of the domain and time of simulation). The

oldest blobs at 80x80 domain arrive near 1s life, which is exactly the timescale

expected with the spike flow model.

Distances While alive, blobs move across the domain. It turns out their move-

ment is not like a random walk in which they would constantly change the

direction of movement and eventually drifted in brownian manner. Instead it

seems like the blobs have true velocities which are changed rarely (see sample

trajectories on figure 3 top right). The best blobs managed to travel nearly 400

distance units on 50x50 domain. With 80x80 domain some blobs traveled nearly

2000 units (with median near 100)! Furthermore these statistics can be dimin-

ished by the methodology - since the domain is a torus some blobs disappear

at one side and reappear at the other. With the current algorithm such spots

are treated separately, whereas in fact they are the same blob. Nevertheless,

even with the imperfect statistics the conclusion is that blobs manage to travel

significant distances.
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Fig. 5. The distribution of distances traveled by blobs on 50x50 domain during

4000ms simulation. The left figure shows all distances including those, traveled

by flase positive blobs (which survive only one time step), the right one shows

only those which persisted at least 2 ms.
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Fig. 6. The distribution of an average number of spikes firing within the blob

per time step. After neglecting false positives (blobs that only emerged for very

short time, in this case < 10) one obtains a fairly centered distribution. This

shows that all persistent blobs are rather equally active.

Activities The figure 3 (bottom right) might suggest that the blobs are of various

sizes and shapes. This is a rather false conviction, since the spots constantly

change, at one frame the blob appears as large while a few steps later it is very

small. To obtain a trustworthy statistics about the blobs activity a following

method was used:

– Whenever a neuron spiked, an algorithm looked for a blob within a distance

of 6 units from the spike

– If it found one, the spike was attributed as coming from that particular blob.

In other case it was ignored.

– When the spot was at the end of its life, the total number of spikes it collected

was divided by its lifetime, to obtain average spiking activity. These averages

were saved to obtain a histogram in figure 6.

The results are shown in figure 6. Again the statistics are corrupted with false

positive transient blobs. After throwing away any spot that survived less that

10 steps, one obtains a fairly well centered distribution with a majority of blobs

having 5-7 spikes/ms. This shows that in fact most of the blobs are much alike,

and carry the same amount of ”activity”

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft

D
ra
ft
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5 Conclusions

The presented model is aimed at bridging biologically plausible dynamical spik-

ing neural networks with the spike flow model which itself is aimed at showing

where the scale-free connectivity in functional brain networks might come from.

The persistent activity blobs described here seem to be right candidates for the

charge units that are being exchanged in the spike flow model. As shown by

simulations, the blobs are persistent, travel significant distances, operate on the

right timescale and on average carry the same amount of ”activity”. The ”neu-

rons” of the spike flow model can in this context be interpreted as subsets of

the domain. In this simple case the domain in 2d (resembling the cortex), but

such blobs should also appear with higher dimensionality. In particular the long

range myelinated cortico-cortical connections can form wormholes that teleport

a blob from one cortical area to another, giving them more freedom (the spike

flow model in the original setup is a mean field model, but many of its properties

remain valid when it is submerged in rich enough topology).
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