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Abstract. Recently the notion of power law networks in the context
of neural networks has gathered considerable attention. Some empirical
results show that functional correlation networks in human subjects solv-
ing certain tasks form power law graphs with exponent approaching ≈ 2.
The mechanisms leading to such a connectivity are still obscure, never-
theless there are sizable efforts to provide theoretical models that would
include neural specific properties. One such model is the so called spike
flow model in which every unit may contain arbitrary amount of charge,
which can later be exchanged under stochastic dynamics. It has been
shown that under certain natural assumptions about the Hamiltonian
the large-scale behavior of the spike flow model admits an accurate de-
scription in terms of a winner-take-all type dynamics. This can be used
to show that the resulting graph of charge transfers, referred to as the
spike flow graph in the sequel, has scale-free properties with power law
exponent γ = 2. In this paper we analyze the spectra of the spike flow
graphs with respect to previous theoretical results based on the simplified
winner-take-all model. We have found numerical support for certain the-
oretical predictions and also discovered other spectral properties which
require further theoretical investigation.

Key words: power law network; spike flow model; graphs spectrum

1 Introduction

Power law networks (often referred to as scale-free networks, which sometimes
causes confusion [1]) are now an established field of study in random graph the-
ory. Diverse empirical evidence have shown that power law connectivity emerges
spontaneously in miscellaneous systems ranging from the World Wide Web [2],
science collaboration networks [3], citation networks [4], ecological networks [5],
linguistic networks [6], cellular metabolic networks [7, 8] to telephone call net-
work [9, 10] and many others. In many cases networks featuring power law degree
distributions also include certain structural properties which enhance tolerance
against attacks or bandwidth (the correspondence between power law degree
distribution and structural properties is not straightforward and has been dis-
cussed in [1]). It is quite natural to ask whether neural systems could benefit
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from such an architecture, and if so, whether there are any mechanisms inherent
to neural activity that might lead to a power law connectivity. Early studies of
C.elegans worm nervous system showed exponential decay of degree distribution
[11, 12], however the network of C. elegans is very small (the whole organism
has only about 1000 cells, and the total number of neurons is just above 300)
whereas the mechanisms of self-organization leading to a power law structure
might emerge in larger populations of neurons with significant feedback wirings.
One strong empirical evidence that this might be the case are the results of [13,
14], which show that the network composed of centers of activity observed in
human brain by FMRI, connected whenever their activity is correlated1 above
a certain threshold is scale-free with power law exponent ≈ 2.

It is worth noting that power law graphs are usually sparse (in the sense
that the number of edges depends linearly on the number of vertices) and yet
well connected (power law graphs are more likely to form a giant component
than corresponding – in terms of edge density – Erdős- Rényi random graphs -
see chapter 6 in [15] for related study). These features seem to be advantageous
for recurrent neural networks, and indeed some studies [16, 17] have proved that
power law architectures are useful for artificial NN. In that case however, the
connectivity was not a result of neural activity but was rather imposed as a
background for already existing models.

Many of the existing models describing the development of power law net-
works are stemming from the model of Barabási and Albert [18] based on growth
and preferential attachment. This model however does not describe well the situ-
ation considered in [13] since growth in this case is very limited. Another reason
why Barabási-Albert model is inadequate to the situation is that in its most nat-
ural setup it leads2 to power law exponent γ = 3 while empirical studies of [13]
strongly suggest γ = 2. In our attempt to provide a more adequate theoretical
description we have developed the so called spike flow model [19] which essen-
tially resembles a typical Boltzmann machine but has more capacitive space of
states and a bit tweaked Hamiltonian (the details are supplied in the next sec-
tion) . Quite unexpectedly the spike flow model turned out to be mathematically
tractable (at low enough temperatures), which allowed to establish explicit re-
sults [20] on the asymptotic properties of the dynamics and the emergence of
a power law charge transfer graph (referred to as the spike flow graph in the
sequel). Further theoretical research allowed to characterize the spectra of the
spike flow graph in the asymptotic regime [21]. The study of spectral proper-
ties is particularly important to determine, whether the spike flow model is an
adequate description of the mechanisms leading to power law connectivity in
nervous system. The results from [21] impose that a certain kind of power law-
like dependence should also be present in the distribution of graph eigenvalues
(in section 4 below there is a brief discussion concerning the details). In this pa-
per we provide numerical simulations which support claims of [21] which can be

1 The patient was asked to perform certain simple tasks during the measurement.
2 There are ways of reaching exponent 2 with variants of Barabási-Albert model, but

they are even less suitable for the phenomena discussed.
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regarded as a theoretical foundations of the results presented here. The theory
in [21] however, is based on the simplified asymptotic version of the model (de-
scribed below as well) whereas the presented material is based on the full-blown
version of the spike flow model. Nevertheless the results show the existence of
a spectral regime in which the predicted dependency is present. There are also
other features of the spectra which require further theoretical study.

The rest of the paper is organized as follows. In section 2 we briefly describe
the spike flow model, its basic properties and theoretical results (subsection 2.1)
and motivations for studying spectral characteristics (subsection 2.2). In section
3 we describe the numerical setup of the simulation. In further two sections we
provide results of the simulation and conclusions.

2 The Spike flow model

2.1 Basic properties

The model consists of nodes σi, i = 1 . . . N . Each node’s state is described by
a natural number from some fixed interval [0, Mi]. In the scope of this paper
we assume Mi = ∞, that is the state space is unbounded (when Mi = 1 on
the other hand the model much resembles Hopfield network). The network is
built on a complete graph in that there is a connection between each pair of
neurons σi, σj , i #= j, carrying a real-valued weight wij ∈ R satisfying the usual
symmetry condition wij = wji, moreover wii := 0. The values of wij are drawn
independently from the standard Gaussian distribution N (0, 1) and are assumed
to remain fixed in the course of the network dynamics. The model is equipped
with the Hamiltonian of the form:

H(σ̄) :=
1
2

∑

i !=j

wij |σi − σj | (1)

if 0 ≤ σi ≤ Mi, i = 1, . . . , N, and H(σ̄) = +∞ in the other case. Here σ̄ denotes
of the state of the whole system. The dynamics of the network is defined as fol-
lows: at each step we randomly choose a pair of neurons (units) (σi, σj), i #= j,
and denote by σ̄∗ the network configuration resulting from the original config-
uration σ̄ by decreasing σi by one and increasing σj by one, that is to say by
letting a unit charge transfer from σi to σj , whenever σi > 0 and σj < Mj .
Next, if H(σ̄∗) ≤ H(σ̄) we accept σ̄∗ as the new configuration of the network
whereas if H(σ̄∗) > H(σ̄) we accept the new configuration σ̄∗ with probability
exp(−β[H(σ̄∗)−H(σ̄)]), β > 0, and reject it keeping the original configuration
σ̄ otherwise, with β > 0 standing for an extra parameter of the dynamics, in the
sequel referred to as the inverse temperature conforming to the usual language
of statistical mechanics. In the present paper we will assume β fixed and large,
that is the system is in low temperature regime and so such ”stochastic” jumps
are rare.

Note that in this setup positive weights wi,j favor agreement of states σi

and σj , while negative weight favor disagreement. Whenever a unit of charge
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is exchanged between two nodes that fact is recorded by increasing the counter
associated with a corresponding edge. The edges (and nodes) being frequently
visited by units of charge are in the focus of our interest. We refer to the resulting
weighted3 graph as to the spike flow graph.

In [20] a number of results related to the spike flow model have been estab-
lished:

– In contrast to a seemingly complex dynamics, with high probability there is
a unique ground state of the system, in which all the charge is gathered in
a unit that maximizes

Si := −
∑

j !=i

wij . (2)

referred to as support in the sequel. The proof goes by a mixture of rigorous
and semi rigorous calculations and has a rather asymptotic character, but is
in full agreement with numerical simulations for systems containing between
a couple hundreds to a couple of thousands of nodes.

– The system’s behavior eventually admits a particularly simple approximation
in terms of a kind of winner-take-all dynamics: almost all transfers converge
to units of higher support (referred to as the elite, while the others referred to
as the bulk), which then compete in draining charge from each other. That
is to say, whenever a pair of units is chosen, the transfer occurs from the
unit of lower support to the unit of higher support. Ultimately the unit of
maximal support gathers all of the charge and the system freezes in a ground
state. This approximation was used in [21] to establish explicit theoretical
results on the properties of the spectra of the spike flow graph.

– The node degree distribution (where by degree we mean the sum of counters
of edges adjacent to a given node4) obeys a power law with exponent γ = 2.
The proof is based on the elite/bulk approximation and properties of ordering
sequences. Again there is a strong agreement with numerical results

2.2 Spectral properties

The graph’s spectrum (in this paper by graph’s spectrum we mean the set of
eigenvalues of the adjacency matrix, not the eigenvalues of combinatorial lapla-
cian which are also studied in the literature, see [22] for comprehensive intro-
duction) is among the most basic characteristic features, yet it provides insights
into various properties which are usually faint in the typical analysis. In [21]
some basic properties of the spectra of simplified spike flow model were investi-
gated. By the simplified version of the model here we mean a model equipped
with the asymptotic winner-take-all version of the dynamics, that is each charge
transfer occurs according the direction of increasing support (however for the
3 Weighted by edge counters that are not directly related to wi,j which remain fixed

as a background to the energy function.
4 Since charge transfers are directed, we distinguish in and out degrees, but asymp-

totically these two are equal in terms of distributions.
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Fig. 1. Typical evolution of the amount of charge in seven units of highest support
in the spike flow simulation. The left figure shows the system of 1000 vertices, while
the right one of 5000 vertices. At the late stage of simulation when only a few units
of highest support contain any charge the winner-take-all dynamics is certainly valid.
At this stage the simulation can be simplified according to the restricted dynamics for
efficiency. It is not obvious however, at which stage the winner-take-all approximation
becomes acceptable. The study of spectral properties might shed some light into such
issues.

validity of spectral analysis edge directions were dropped). It is worth noting,
that even though such a dynamics becomes reasonably valid in large instances
of the spike flow model after some number of steps, it is not valid in the early
stages of the simulation when there is still a lot of charge in the bulk units. Cor-
respondingly, the resulting spike flow graph may be noisy and contain various
distortions. Nevertheless the shape of the spectrum depends on global features
and should to some extent exhibit the predicted properties. The results of [21]
imply that when sorted descending, the k-th eigenvalue behaves like C

k2 for some
constant C (note, this paper [21] provides a theoretical background of the results
presented here). This result, established by investigating the spectrum of appro-
priate Hilbert-Schmidt type operators associated to the random evolution in the
asymptotic regime, is valid for the simplified spike flow graph truncated at both
ends by some δ1 and δ2 i.e. the nodes of degree less than δ1 and more than δ2

are removed from the graph. Recall that removing single vertices from the graph
is not easily expressible in terms of graph’s eigenvalues and in particular it does
not correspond to removal of any particular eigenvalues from the spectrum5.

3 Numerical setup

The simulations were carried out with the spike flow model consisting of 5000
units in the low temperature regime (β = 100 which results in extremely rare
5 The resulting graph has less vertices and consequently there are less eigenvalues in

the spectrum, but these remaining eigenvalues correspond to a different adjacency
matrix.
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6 Filip Piekniewski

transitions against the energy factor). At the beginning of the simulation each
unit received 5 units of charge. The simulation was run until all of the avail-
able charge ended up in a small fraction of units of maximal support (5 in the
case of simulations of 5000 vertices). By then, the winner-take-all approxima-
tion becomes perfectly valid (see figure 1), and consequently at the final stage
the remaining simulation can be executed with simpler and faster version of the
dynamics (winner-take-all) without affecting the resulting spike flow graph. The
obtained weighted adjacency matrix was symmetrized by adding matrix to its
transpose (consequently edge weights in both directions were summed).

4 Results
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Fig. 2. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues
were sorted descending and plotted on a log-log plot. The left figure shows the whole
spectrum, the right one only 10% largest eigenvalues. Clearly, the left linear part of the
plot behaves like y = −2x which implies that k-th eigenvalue is proportional to k−2.
This relation is only visible for the top ten eigenvalues.

In the present study we simulated the setup described in subsection 2.2 by
truncating empirical spike flow graph at various levels, having in mind however,
that the winner-take-all approximation is itself valid for the upper part of the
range of vertex degrees. That is, we expect that significant cutoff of low degree
vertices should not alter (interesting part of) the spectrum significantly whereas
even minor cutoff of high degree vertices might have a devastating effects on the
shape of the spectrum6 (at least at the part which is in the focus of our interest,
that is the set of largest eigenvalues). .

The above considerations proved to be true for the investigated model. To
make things clearly visible we plotted the spectrum in the descending order on
6 Consequently, finding out at which point the predicted spectral properties give up

provides an insight into how accurate the winner-take-all approximation actually is.
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Fig. 3. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues
were sorted descending and plotted on a log-log plot. The left figure shows the whole
spectrum, the right one only 10% largest eigenvalues. In this case however, 70% of the
nodes of lowest degrees were cut off. Nevertheless the left linear part of the plot still
behaves like y = −2x . The rightmost part of the spectrum (which corresponds to small
eigenvalues) exhibits interesting ”stair regime”, which requires further investigation.
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Fig. 4. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues
were sorted descending and plotted on a log-log plot. The left figure shows the whole
spectrum, the right one only 10% largest eigenvalues. In this case however, 70% of the
nodes of lowest degrees and 1% (50) of the nodes of highest degrees were cut off. A
couple of top eigenvalues behave like y = −2x . The ”stair regime” is clearly visible at
right of the spectrum.
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Fig. 5. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues
were sorted descending and plotted on a log-log plot. The left figure shows the whole
spectrum, the right one only 10% largest eigenvalues. In this case however, 70% of the
nodes of lowest degrees and 3% (150) of the nodes of highest degrees were cut off. Here
the y = −2x becomes irrelevant, which suggests that the property is related to the
elite part of the graph which has been fairly cut off.

a log-log plots (figures 2,3,4,5) with various cutoffs. We expected that the initial
(leftmost) part of the spectrum would form a straight line on the log-log plot
with slope of ≈ −2. Clearly such a straight line is visible on figure 2 where the
spetrum of the full (not truncated) graph is presented. This regime is valid for
about 10 largest eigenvalues (it might not seem that significant, but note that
these 10 largest eigenvalues contain notable part of the total mass of the spec-
trum), for smaller eigenvalues the approximation breaks down due to distortions
related to more complex dynamics of the full blown model7. As expected, the
investigated part of the spetrum remains nearly intact (figure 3) after significant
cutoff of the low degree vertices (70% of the low degree vertices were removed).
Interestingly, the other part of the spectrum (i.e., small eigenvalues) started
to exhibit somewhat discrete decay resembling a stairway (there are groups of
eigenvalues having nearly same value). The reasons for such a spectral character-
istic are yet unclear and require further theoretical explaination. Figure 4 shows
the spectrum of the graph, whose 70% of low degree vertices and 1% of high
degree vertices were removed. Clearly the initial part of the spetrum in which
the straight line approximation is valid had shrunk to about 4 eigenvalues. The
removal of 1% of high degree vertices (50 vertices) knocks down fair amount of
the elite and consequently the winner-take-all approximation becomes inaccu-
rate. This effect is even more visible in figure 5 where 3% (150) of high degree
vertices were removed and the straight line regime is nearly absent, although
still the first two eigenvalues seem to follow the expected relation. As mentioned
earlier, the largest eigenvalues are not directly related to largest degree vertices

7 This is not very surprising since the winner-take-all dynamics is certainly not valid
for low degree vertices.
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and the above result should rather be interpreted in terms of validity of the
winner-take-all approximation of the resulting truncated graph.

5 Conclusions

It seems that the theoretical predictions of [21] are to some extent observable
in the full blown spike flow model equipped with significantly more complex dy-
namics that the winner-take-all simplification. The results of [21] are themselves
of rather asymptotic character, and consequently it was not obvious whether any
of the predicted properties would be visible in the simulation of 5000 vertices,
where the winner-take-all approximation is only valid for some fraction of the
units of high support. Empirical data give insight into more complex spectral
properties of the spike flow model, notably the stairway regime which might be
related to the fact, that the truncated version of the graph can become discon-
nected, and consequently the particular flat regions in the spectrum could be
attributed to various connected components, but this requires further investiga-
tion.
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