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Theoretical model for mesoscopic-level scale-free
self-organization of functional brain networks

Jaroslaw Piersa, Filip Piekniewski, Member, IEEE CIS and Tomasz Schreiber

Abstract—In this paper we provide theoretical and numerical
analysis of a geometric activity flow network model which is aimed
at explaining mathematically the scale-free functional graph self-
organization phenomena emerging in complex nervous systems
at a mesoscale level. In our model each unit corresponds to a
large number of neurons and may be roughly seen as abstracting
the functional behavior exhibited by a single voxel under the
fMRI imaging. In the course of the dynamics the units exchange
portions of formal charge which correspond to waves of activity in
the underlying microscale neuronal circuit. The geometric model
abstracts away the neuronal complexity and is mathematically
tractable which allows us to establish explicit results on its
ground states and the resulting charge transfer graph modeling
functional graph of the network. We show that for a wide
choice of parameters and geometrical set-ups the model yields
a scale-free functional connectivity with exponent approaching
2 in agreement with previous empirical studies based on fMRI.
The level of universality of the presented theory allows us to
claim that the model does shed light on mesoscale functional
self-organization phenomena of the nervous system, even without
resorting to closer details of brain connectivity geometry which
often remain unknown. Material presented here significantly
extends our previous work where a simplified mean-field model in
a similar spirit was constructed, ignoring the underlying network
geometry.

Index Terms—scale-free, geometric neural network, mesoscale,
mesodynamics

I. INTRODUCTION

SCALE-FREE self-organization has attracted considerable
amount of attention in statistical mechanics, physics and

mathematics. Power laws in degree distributions have been
reported in various networks ranging from the World Wide
Web [1], science collaboration networks [2], citation networks
[3], ecological networks [4], linguistic networks [5], cellular
metabolic networks [6], [7] to telephone call network [8],
[9] etc. This subject is also tempting for neural network and
neuroscience community. There are various reports suggesting
performance gains with artificial NN built on power law and
small world graphs [10]–[12] and more research is in progress.
The studies of biological neural network connectivity of C.
elegans worm revealed exponential rather than polynomial
decay in degree distribution [13], [14], however the worm
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Poland. This research has been supported by the Polish Minister of Scientific
Research and Higher Education grant N N201 385234 (2008-2010). The
work of J. Piersa has also been supported by the European Social Fund
and Government of Poland as a part of Integrated Operational Program for
Regional Development, ZPORR, Activity 2.6 ”Regional Innovation Strategies
and Knowledge Transfer” of Kuyavian-Pomeranian Voivodeship in Poland.

Manuscript received ???; revised ???.

has only about 300 neurons total and therefore the self-
organization in the sense discussed in this paper is very limited
in this case. It would also be surprising to find a power law
connectivity on the level of single neurons due to physical
limitations - similarly the Internet on the level of hardware is
not a scale-free network since there are no physical devices
that could connect thousands of computers.

However, recent advances in medical imaging and data pro-
cessing techniques have provided very strong hints that power
law connectivity might constitute an important aspect of self-
organization and dynamics of far more complex (mammalian
like) nervous systems (in particular neocortex). Whereas we
refer the reader to [15], [16] for an extensive review, here
we only briefly recapitulate the general picture emerging from
this interdisciplinary research. In general, both the structural
(anatomic) and functional (based on observed activity profile)
networks in human and higher animal brains are found to
exhibit highly structured hierarchic architecture of small-world
type (small mean path-lengths and high local clustering),
see ibidem and the references therein, yet not always are
these networks scale-free (exhibiting power law in degree
distribution). Among various network types studied, depending
on the medical imaging and data processing methodology, our
interest in this paper is focused on voxel-based functional
networks arising in fMRI brain observations [17]–[20] where
scale-free architecture has been reported, often with exponent
approaching 2, both in the rest state and in the course of
some task execution. This power law gets exponentially cut
off or even breaks down on larger scales, for instance with
anatomical regions playing the role of nodes, [21], [22] which
is apparently due to the scale difference and to system’s
physical limitations, see the discussion in [15, p.192]. In fact,
it should not be considered surprising that the scale-freeness,
whose mathematical definition involves system sizes tending
to infinity, at the level of large but finite systems is encountered
only in approximate form, moreover it is also very natural that
the finite-size corrections arising (for instance the exponential
cut-off) become more significant as the system size decreases,
for instance due to decreasing resolution, as reported e.g. in
[23]. This is a usual situation in statistical physics where the
quality of approximation of a complex system’s behavior by
its mathematical idealization derived in the thermodynamic
limit essentially depends on system’s size and scale. However,
determining the precise range of characteristic spatial and
temporal scales as well as of data processing schemes where
the scale-free approximation of brain’s functional topology is
valid, seems to be an important open question upon which
many competing opinions exist, see again [15, p.192].
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The research triggered by these and related empirical find-
ings has often been complemented by computer simulations
[24]–[26]. Interestingly, also in some simulation studies based
on phenomenological neuron model by E. Izhikevich [27], the
presence [25] or absence [28, Chapter 6] of scale-freeness
strongly depended on the definition of network’s constituent
nodes.

An important step in theoretical understanding of these
scale-free self-organization phenomena was made in [29],
where it is argued and shown by a numerical study that
mesoscopic scale brain functional networks exhibit in many
aspect behavior typical for the Ising model at criticality. This
is further supported by numeric study in [30] where a further
model due to Kuramoto is also considered at criticality.

The empirical findings quoted above have so far lacked
a satisfactory dedicated theoretical model, since the tradi-
tional ways of constructing scale-free networks [31]–[33]
were based on the concept of growth and preferential at-
tachment/duplication - ideas well suited for networks like the
Internet, citation graph or even the molecular networks, but
not necessarily appropriate for the nervous system. The mean
field spike flow model introduced in [34] and further studied
in [28], [35] was the first mathematically tractable approach to
provide such a theoretical background. The model is intended
to describe functional networks arising on mesoscopic spatial
scales (at the level of fMRI voxels, possibly also on the finer
scale of local assemblies of cortical microcolumns, but not on
the scale of individual neurons) and mesoscopic time scales,
long enough to allow for system’s relaxation but short enough
to safely assume fixed environment of the dynamics (quenched
disorder). It is important to emphasize that on the chosen
mesoscale each functional node is composed of thousands
of neurons and possibly a number of cortical minicolumns,
never of just individual neurons. As we proved mathematically
in [35], our model does indeed result in a power law graph
with exponent equal 2 (in agreement with many empirical
findings as quoted above) based solely on its dynamical
features which reflects the charge exchanges/activity flow in
a neural network on a medium (meso) scale. In this paper
we present an important geometric extension to this spike
flow model, which goes significantly beyond the mean-field
setting and introduces geometric distances between the units
thus making the model a lot more feasible for the description
of the real nervous system by embedding it in a physical
space. We show mathematically and present numeric evidence
that also this spatially embedded model does give rise to
power law connectivity. In the course of theoretical analysis
we also identify finite range distortions marking the validity
region of the power law in finite systems. Strikingly, not
only is the power law exponent again 2 here, but under
certain reasonable regularity conditions it does not depend
on parameters of the geometric embedding! These criticality
and universality features stand in strong conceptual agreement
with [29], [30], although the models considered there pertain
to a different spatial scale – an individual state variable in
the Ising model is {+1,−1}-valued, in Kuramoto’s model it
takes values in the unit circle, whereas in our model state
variables are unbounded and can be any natural numbers thus

corresponding to more complex entities. Also, the criticality of
our model is self-organized (not driven by parameter tuning) as
opposed to the cases discussed in [29], [30] where the dynamic
criticality is reached by manipulating the control parameters.
Moreover, our model evolves under Kawasaki dynamics as
opposed to the spin flip Glauber dynamics considered in [29].
Some further discussion of these differences and relationships
between our model and [29], [30] will be given at the end
of Section IV although we will not go far beyond conceptual
comparisons there because these models work on essentially
different scales.

The rest of the paper is organized as follows: in section II
we describe our basic model which constitutes an important
enhancement of the spike flow model introduced previously, as
being now equipped with geometrical connectivity of a rather
general type. We then analyze the ground states and provide a
simple description of the asymptotic dynamics in section III.
The crucial section IV contains the most important results of
the paper related to the emerging scale-free connectivity. In
section V we equip the model with additional long range con-
nections which might correspond to long myelinated neuronal
fibers connecting remote sites of the cortical surface. Section
VII contains a number of numerical results supporting the
discussed claims. Finally we conclude the paper and provide
references.

II. THE BASIC ISOTROPIC MODEL

The spin glass type model constructed in this section is
aimed at abstracting in a mathematically tractable way the
essential features determining the mesoscopic level geometry
of spiking activity in recurrent neural nets. This was first
done in a mean-field setting in [35] where we studied a
model built on a complete graph, with all constituent units
fully interconnected. Here we go significantly beyond the
mean-field analysis and introduce a rather flexible geometric
set-up with a considerable amount of degrees of freedom.
For definiteness we construct our system on a (unit) sphere
Sd−1 ⊂ Rd, referred to as the spatial domain of the model
in the sequel, and usually taken to be S2 in our simulations.
For intensity parameter λ > 0 we write Pλ to denote the
homogeneous Poisson point process on Sd−1 with intensity
λ, modeling the spatial locations of the units constituting our
system. The intensity λ will always be taken large in our
simulations, which is reflected by letting λ → ∞ in our
theoretical argument. Each unit x ∈ Pλ, sometimes also called
a neuron by a convenient abuse of terminology, is endowed
with its state variable σx ∈ N := {0, 1, 2, . . .}. In terms
of the original neural network the σ′xs are to be regarded as
an abstraction of activity levels of coarse-grained mesoscopic
portions of the network at the corresponding spatial locations
distributed according to Pλ. An alternative interpretation can
be also provided under the dynamical system description of the
neurodynamics, where σx can be regarded, on a mesoscopic
time scale, as abstracting the (fraction of) time spent by the
system within a behavioral pattern locally manifested at x. For
terminological convenience, in the sequel we shall refer to σx
as to the charge stored at x, which makes our developed model
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into a charge flow model. The charge conservation property
enjoyed by the stochastic dynamics we construct below, admits
a natural motivation in terms of both abstract interpretations
of σx discussed above, corresponding respectively to total
activity conservation and the fact that system sojourn times
sum up to a constant. To proceed, we consider a connectivity
function g : R+ → [0, 1] and for each pair x, y ∈ Pλ we
independently place a connection (edge) between x and y with
probability g(|x− y|) and leave these units unconnected with
the complementary probability. We write x ∼ y to denote the
fact that x and y are connected by an edge. Note that the so-
constructed connectivity structure of our system corresponds to
a classical random connection model considered in stochastic
geometry [36]. To each edge joining x ∼ y ∈ Pλ, denoted
below by exy, we independently assign a standard Gaussian
weight wxy ∼ N (0, 1), where, in intuitive terms, a positive
wxy should be interpreted as a propensity of x and y to
synchronize and thus to exhibit similar activity levels whereas,
conversely, a negative wxy indicates an inhibitory interaction
between x and y. The energy function of the system (the
Hamiltonian) is given by

H(σ̄) :=
∑
x∼y

wxy|σx − σy|. (1)

The initial configuration of the network is constructed by
endowing each unit with a constant initial charge α ∈ N. Next,
the system evolves under a standard Kawasaki-type charge-
conserving dynamics. At each step we randomly choose a
pair of connected units (σx, σy), x ∼ y ∈ Pλ and denote
by σ̄∗ the network configuration resulting from the original
configuration σ̄ by decreasing σx by one and increasing σy
by one, that is to say by letting a unit charge transfer from
σx to σy, whenever σx > 0. Next, if H(σ̄∗) ≤ H(σ̄) we
accept σ̄∗ as the new configuration of the network whereas
if H(σ̄∗) > H(σ̄) we accept the new configuration σ̄∗

with probability exp(−β[H(σ̄∗) − H(σ̄)]), β > 0, and
reject it keeping the original configuration σ̄ otherwise, with
β > 0 standing for an extra parameter of the dynamics, in
the sequel referred to as the inverse temperature conforming
to the usual language of statistical mechanics and assumed
fixed and large (low temperature) throughout. Observe that
the sum

∑
x∈Pλ σx of neuronal charges is preserved by the

dynamics and that, in the course of dynamics with some initial
configuration σ̄0, any other σ̄ with

∑
x∈Pλ σ

0
x =

∑
x∈Pλ σx

is eventually reached with positive (although possibly very
small) probability. Recall that our default initial configuration
choice is σ0

x ≡ α. Consequently, upon standard verification
of the usual detailed balance conditions, we readily see that
the collection of stationary states of the above dynamics are
precisely the distributions

Pn(σ̄) =

{
exp(−βH(σ̄))∑

σ̄′,
∑
x σ
′
x=n exp(−βH(σ̄′)) , if

∑
x σx = n,

0, otherwise
(2)

and their convex combinations. In particular, upon forgetting
its geometric structure, our model bears formal resemblance
to the usual stochastic Boltzmann machines [37] (under
Kawasaki dynamics) and inherits the usual intuitive interpreta-

tion of their energy function, with the weights wxy indicating
the extent to which the system favors the agreement (for
positive wxy) or disagreement (for negative wxy) of the activity
levels σx and σy as already mentioned above. In spite of
these formal analogies our model does nevertheless differ
from Boltzmann machines in a very essential way due to the
unbounded state space N for σ′xs. For the network dynamics
running during a long time period [0, T ] we are now in a
position to define the spike flow graph to be a directed graph
with vertices corresponding to the units σx, x ∈ Pλ and whose
edges carry numbers (edge multiplicities) Fx→y indicating
how many times in the course of the dynamics the charge
flow occurred from σx to σy, x, y ∈ Pλ. As we will see, if
β is very large, which is always going to be assumed in this
paper, after a long enough simulation run the system freezes
in some ground state whereupon any further potential flow
becomes very rare and consequently the numbers Fx→y also
effectively freeze undergoing virtually no further changes. We
say that the dynamics jams or saturates in this case and we
always consider Fx→y at saturation in the sequel, the way of
detecting saturation is discussed at the very end of the next
Section III, see condition [Saturation] there. The in-degree of
a unit σx is now defined as din(x) :=

∑
y∼x Fy→x

The crucial question considered in this paper is whether the
so-defined spike flow graph is scale-free in that its in-degree
distribution follows a power law, that is to say P(din(x) ≈
k) ∼ cink−γin for a randomly picked node x ∈ Pλ. Below we
shall establish a positive answer to this question. It should be
noted at this point, as will become clear from our discussion
below, that the asymptotic behavior of the corresponding out-
degree distribution is the same as that of the in-degrees.

III. WINNER-TAKE-ALL DYNAMICS AND GROUND STATES

It turns out that the long time scale dynamics of our basic
model admits a very convenient approximation in terms of a
simpler winner-take-all dynamics introduced in [35] as soon
as λ is large enough, which mathematically corresponds to
taking λ → ∞. Our argument here is a version of that given
in Section 3 of [35] specialized for our present setting, we
refer the reader to [35] for further details. First, we define the
support Sx of a unit at x ∈ Pλ

Sx := −
∑
y∼x

wxy. (3)

Assume now we run our charge-flow dynamics for some long
enough amount of time to get close to equilibrium, whereupon
we consider a small number o(N) of units which store the
highest charge, considerably higher than the remaining units,
and we call these elite units/neurons while granting the term
bulk units/neurons to the remaining units in the system. Since
the cardinality of elite is a negligible fraction of N, the formula
(1) becomes then

H(σ̄) ≈ −
∑
x∈elite

σxSx +
1

2

∑
x,y∈bulk

wxy|σj − σl|.

Next, we note that whenever in the course of the network
dynamics a charge transfer is proposed from a bulk unit σy
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to an elite neuron σx, y ∼ x, the resulting energy change is
seen to be well approximated by −Sx plus a term due to the
interaction between σy and other bulk units. In general, we
have no control of this term, yet if σx is one of the neurons
with the highest support in the system, this offending term
is very likely to be negligible compared to −Sx thus making
the energy change strongly negative and the proposed transfer
extremely likely to be accepted. Clearly, the inverse transfer
becomes then almost impossible. Consequently, whenever a
unit with a very high support enters the elite, it virtually never
leaves it; moreover it continuously drains charge from the bulk
losing it only to other elite members if at all. Furthermore,
should a unit with a small support value happen to enter the
elite at the early stages of the dynamics, it will soon leave
it having its charge drained by other higher supported units.
Thus, after running our dynamics long enough we end up with
a picture where the elite consists of units with the highest
support. Although the elite neurons do struggle for charge
between themselves, they cooperate in draining it from the
bulk. Therefore eventually almost no charge will be present in
the bulk and hence the Hamiltonian will admit a particularly
simple approximation

H(σ̄) ≈ −
∑
x∈elite

σxSx (4)

and all further updates in the system will only happen due
to charge transfers within the elite. Note now that, since
the cardinality of the elite is o(N), for each elite neuron
its interactions with the remaining elite units are effectively
dominated by those with the bulk. Thus, keeping in mind
that the inverse temperature β is very large, the dynamics
between the elite neurons takes eventually a particularly simple
form: a pair x ∼ y of connected elite neurons is chosen by
random and if the one with smaller support attempts to transfer
a unit charge to the one with higher support, the attempt
is accepted, otherwise it is rejected. Clearly, this dynamics
effectively terminates by storing all available charge in neurons
which are not connected to any higher support units, call these
ground units. Although formally the only ground state of the
system is obtained by putting all charge into the unit of the
highest support, which clearly is a ground neuron, we will
slightly abuse the terminology and grant the name of a ground
state to each configuration where all charge is stored in ground
units – note that this makes a good sense in the λ → ∞
asymptotics where the potential barriers between these ground
states become impassable for the dynamics. It should be noted
that at intermediate stages of the dynamics it may happen that
elite members show up with charges whose order is inverse to
that determined by the supports rather than consistent with it.
This is a metastable artifact due to the fact that if we admitted
negative charges here, a twofold sign-flip symmetry would be
present in the system in full analogy to usual networks with no
external field and such inverse ordering would compete with
the standard one on equal rights. This is not the case here
though because negative charges are not allowed and therefore
such inversely ordered structures are temporarily stable and do
not persist in the course of the dynamics.

In view of the above discussion, the highest in-degrees of

the spike-flow graph are observed in elite units enjoying the
highest support from the system, and the corresponding charge
flows Fi→j are mainly due to the internal charge transfers
within the elite. Thus, our discussion shows that the asymptotic
λ → ∞ behavior of the charge flow graph generated by
our network model is accurately described by the following
simplified winner-take-all (WTA) model:
• The system consists of gas of elite units with spatial loca-

tions determined by homogeneous Poisson point process
P% on Sd−1 of intensity 1� %� λ.

• Each unit located at x ∈ P% has its state variable denoted
as before by σx.

• Each unit located at x ∈ P% has its support mark µx
chosen uniformly in [0, 1] independently of the locations
and remaining supports of units constituting the system.
The neuron σx is declared to have higher support than
σy, x, y ∈ P% iff µx > µy.

• α card[P%] = Poisson(α ς(Sd−1)) units of charge are
sequentially introduced into the system, each time ac-
cording to the following dynamics

– first, a unit charge is transferred to a randomly
chosen neuron σx0 , x0 ∈ P%,

– thereupon it starts jumping to subsequent neurons
σx1

, σx2
, . . . where xl+1 is randomly chosen among

y with xl  y, that is to say among y ∼ xl with
µy > µxl . Whenever a jump from σxl to σxl+1

is performed, the charge transfer counter F̂xl→xl+1

gets incremented by one. These charge counters
approximate the corresponding charge flow counts in
the original model. An additional counter F̂⊥→x is
also considered storing the number of units initially
assigned to σx.

– eventually the unit charge reaches a ground unit and
gets frozen there.

• the in-degrees of the elite neurons in the original network,
given by din(x) =

∑
y∼x Fy→x are approximated by the

numbers Dx = F̂⊥→x +
∑
y∼x F̂y→x indicating how

many charge units have visited σx on their way to a
ground neuron.

In other words, in this model the charge transfers always
occur from a neuron with smaller support to a randomly
chosen better supported one to which a connection is available,
whence the term winner-take-all dynamics. A few words are
due to explain the meaning and assignment mechanism of the
support marks. Roughly speaking, our intention is to have µx
such that

dµx card[P%]e (5)

stand for the number the unit σx occupies in the hierarchy
of neurons ordered by ascending supports. Assigning i.i.d.
uniform marks to units in P% is equivalent to making all
support orderings equiprobable, which is natural in view of the
rotational symmetry of the system, implying equidistribution
of support marks, and in view of the fact that the supports Sx
and Sy as defined in (3) for two different units σx and σy can
only share wxy (if at all) among their constituent weights and
thus are effectively independent given P%, likewise for higher
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but fixed cardinality collections, which asymptotically grants
effective independence of the support marks. Clearly, this
construction yields an approximation of the original dynamics,
which is only statistically valid, but this is sufficient for our
needs:
• the winner-take-all rule happens to be violated, with very

small probability though,
• the independence of supports given P% is only approx-

imate, but this approximation is very good in large %
asymptotics,

• the supports Sx and hence µx are in general not indepen-
dent of the spatial configuration P% as determining the
number of connections at x, and thus µx should be made
depend on P%, however this effect can be neglected for
our purposes in large % asymptotics as it vanishes already
upon local spatial averaging (mesoscopic-level coarse-
graining) whereas we mainly consider global average
characteristics determining the scale-free geometry of
charge flow graphs.

We conclude this section by noting that as a by-product
of the discussion above we get a clear criterion determining
whether the dynamics of our basic model has reached satura-
tion. This is

[Saturation] The system has reached saturation
when all charge is stored at ground units.

IV. SCALE-FREE SELF-ORGANIZATION

The purpose of the present section is to study the degree
distribution of the charge flow graph generated by our charge
flow model. To this end, we will analyse the behavior of
exceedance probabilities of the type

G(k) := P(din(x) ≥ k) (6)

where x is a randomly chosen point in Pλ and where both k
and λ are large. Mathematically this corresponds to taking
λ → ∞ and k → ∞ and thus all our theory below is
to be understood as statements about the limits as suitable
parameters tend to ∞. The requirement that k be large allows
us to restrict our attention to the elite units evolving under the
winner-take-all dynamics discussed in Section III. Indeed, the
in-degrees of the bulk units are in usually relatively low and
thus the bulk neurons can be neglected in our considerations.
Consequently, it is enough to study the winner-take-all model
with spatial locations distributed according to P%, as discussed
above. To proceed with our analysis, to each point x ∈ P% we
ascribe its visiting intensity Φ(x) set to be the expected value
of the number Dx of charge units visiting σx on their way to a
ground neuron, given the configuration P%. Then it is readily
seen by the definition of the WTA dynamics that

Φ(x) = α+
∑
y x

Φ(y)

card[N↑(y)]
(7)

where y  x stands for y ∼ x and µy < µx whereas
N↑(y) := {z ∈ P%, y  z}. The relation (7) allows us
to evaluate Φ(x) recursively starting from the minimal points
of the  -induced order, that is to say points y for which

N↓(y) := {z ∈ P%, z  y} is empty, and proceeding up-
wards in the support hierarchy towards the maximal elements
corresponding to the ground neurons of the system. Writing
1x y for the random variable taking value 1 if x y and 0
otherwise we can rewrite (7) as

Φ(x) = α+
∑
y∈P%

1y xΦ(y)∑
z∈P% 1y z

and recalling that the random variables 1(·) (·) are all inde-
pendent by the construction of the random-connection graph,
we conclude that the collection of (Φ(x))x∈P% exhibits in large
% asymptotics strong self-averaging properties which, together
with the spherical symmetry of the system, implies that the
value of Φ(x) effectively only depends on the value of the
support mark µx, that is to say

Φ(x) ≈ φ(µx) (8)

where φ(·) is some deterministic function. Moreover, for given
(x, µx) and y ∈ P% with µy unknown we have

P(y  x) = µxg(|x− y|), P(x y) = (1− µx)g(|x− y|)
(9)

whereas for µy known we get

P(y  x) = 1µy<µxg(|x− y|). (10)

Hence

card[N↑(x)] ≈ %(1−µx)

∫
Sd−1

g(|x−y|)ς(dy) = %(1−µx)γ

(11)
with γ :=

∫
Sd−1

g(|x − y|)ς(dy) not depending on x by
isotropy of the system and where ς(·) stands for the spherical
surface measure. Note that although (11) is valid for all
µx ∈ (0, 1) in large % asymptotics, for a given % we should
have %(1 − µx) � 1 so that the self-averaging applies.
Consequently, putting (7) together with (8,9,10) and (11) we
are led to

φ(µx) = α+ %

∫
Sd−1

∫ µx

0

g(|x− y|) φ(µy)

%(1− µy)γ
dµyς(dy) =

α+

∫ µx

0

φ(y)

(1− µy)
dµy

[∫
Sd−1

g(|x− y|)ς(dy)

γ

]
for 1− µx � %−1. Recalling now the definition of γ we end
up with

φ(s) = α+

∫ s

0

φ(t)

1− t
dt, 1− s� %−1, (12)

and thus, upon solving,

φ(s) =
α

1− s
, 1− s� %−1. (13)

To proceed, we use the fact that the average number of points
x ∈ P% with µx ∈ [s, s + ds] is %ς(Sd−1)ds, whereas the
overall mean number of points in P% is %ς(Sd−1), whence the
average fraction of points with support marks in [s, s + ds]
is simply ds. Moreover, we note that by the self-averaging
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property of our system, as % → ∞ we have Dx ≈ Φ(x) ≈
φ(µx). Therefore, using (13) and recalling (6) we come to

G(k) ≈ P(Dx ≥ k) ≈
∫
{s, φ(s)≥k}

ds = α/k. (14)

This is the cumulative version of the statement that
P(din(x) ≈ k) ∝ k−2 with x standing for the random point in
P%. Thus, we have established the first main theoretical result
of this paper.

Theorem 1: The charge flow graph induced by our basic
isotropic model is, in large λ and % asymptotics, scale-free
with exponent 2, with overwhelming probability.
Note that this theorem supports the viewpoint presented in
[29], [30] where universality classes of statistical mechanical
models at criticality have been advocated as providing possible
explanation of crucial properties of brain functional networks.
Clearly, there are important differences in mathematical details
between our model and the approach presented there, which
are due to different spatial scales – the models in [29], [30]
refer to simple state variables whereas we are dealing with
unbounded state variables corresponding to more complicated
mesoscopic units abstracting neuronal ensembles (for instance
at the level of fMRI voxels, possibly also on a lower scale
of groups of cortical microcolumns) rather than individual
neurons. Moreover, the models used in [29], [30] achieve
criticality upon adjusting suitable order parameters whereas
our model exhibits self-organized criticality as the power law
in Theorem 1 does not depend on any order parameters.
However, at the conceptual level there is a good agreement.
In this context it is worth noting for instance the presence of
metastable inverted configurations in the course of the basic
model’s dynamics as discussed just above the formal definition
of the WTA model in Section III. Likewise, it should be
observed that although the Winner-Take-All dynamics itself
is very robust, the notion of the winner is not – the system
will unfold according to the asymptotic WTA description for
overwhelming majority of disorder (weights) configurations,
but the support values determining the corresponding support
marks and thus the WTA hierarchy are themselves extremely
sensitive to the disorder. Moreover, as observed, discussed and
presented in figures in Subsection VII-A, the ground units
give rise to local basins of attraction which exhibit certain
level of geometric contiguity and which consist of units whose
activities correlate in the course of the dynamics. All these
features are again in agreement with critical properties of brain
functional networks in focus of [29]. Questions related to this
fact are the subject of our ongoing work in progress.

A careful reader might wonder at this point why we did
not mention above one further apparently crucial difference
between our model and the approach in [29], namely that our
model here evolves according to charge-conserving Kawasaki
dynamics whereas there the Ising model is let evolve under
Glauber spin flip dynamics. The point is that, as can be seen in
the proof of Theorem 2 and especially in (18), if we relax the
charge conservation the model still exhibits scale-free behavior
although with a different exponent. In other words, within
reasonable limits the particular choice of the dynamics is not
crucial for the scale-freeness property, although clearly the

very nature of our charge-flow model requires that at each
step two units be chosen, one as the source and the other
as the destination, which excludes for instance any kind of
Glauber-type dynamics.

We conclude this section by making one further remark. All
our results stated in this paper have the form of limit theorems,
that is to say statements about limits when suitable parameters
tend to ∞. Although we have some partial knowledge about
the speed of this convergence for WTA regime, obtained using
measure concentration techniques, see proofs of Corollaries 1
and 2 in [38], and although we are able to estimate certain
finite size corrections, see (12) and (13), in general currently
we do not know precisely how large λ should be so that our
asymptotic results provide a good approximation. However, a
very practical answer to this question is given in Subsection
VII-A where the system sizes and simulation lengths turned
out to be large enough to ensure validity of our theoretical
approximation, see Table I.

V. HANDLING LONG RANGE CONNECTIONS

Our basic model admits a natural extension to neatly deal
with long range random connections. These connections are
assumed to occur along strongly elongated myelinated axons
(covered by myelin sheaths) and their impulse propagation
time scales are larger than that characteristic for the meso-
scopic self-organizing activity of the network considered in
our basic model. Consequently, from the viewpoint of the
mesoscopic time scale in the focus of our attention, the spike
transfers along long myelinated axons do not participate in
the self-organizing activity of the network and are locally
felt just as a random excitatory noise. Note however that
their influence can be important and even crucial for some
higher order self-organization on larger time scales, which falls
outside the scope of this paper though. In view of the above,
the effect of long axonal connections in our mesoscopic setting
is modeled by gradual fading or even suppressing the contribu-
tion of these spike transfers to dynamic self-organization and
regarding them just as a long range propagation mechanism
for excitatory noise. In terms of our models it amounts to
the following modification to their construction and dynamics,
with the WTA version approximating the asymptotic behavior
of the original dynamics by argument fully analogous to that
given in Section III for our basic set-up:
• We fix a parameter δ > 0 and from each neuron σx

in the system we emit a mean δ number of exceptional
connections, modeling the long axons, with target units
independently chosen from law κ(|x − y|)ς(dy), where∫
Sd−1

κ(|u|)ς(du) = 1. The newly created exceptional
connection between two units already connected replaces
the previous usual connection. The fact that there is
an exceptional connection between units σx and σy is
denoted by x⇔ y.

• In both the original model and its winner-take-all approx-
imation, whenever a charge transfer is attempted from
x to y with x ⇔ y, this attempt is always succesful,
respectively regardless of the sign of the resulting energy
change and regardless of whether µy > µx or not.
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Note that the standard way of constructing the exceptional
connections with properties required above is to independently
place an exceptional connection between each two units σx, σy
• with probability δκ(|x−y|)

λς(Sd−1) for x, y ∈ Pλ in the basic
model,

• with probability δκ(|x−y|)
%ς(Sd−1) for x, y ∈ P% in the WTA

model.
In both cases, the obtained cardinality of exceptional connec-
tions outgoing from an individual unit is precisely Poisson(δ)
as required.

Unlike in our basic set-up, here with the exceptional con-
nections present the dynamics in general does not terminate.
Thus, to avoid infinite weights on the edges of the charge flow
graph, we resort to a technical trick: choose a constant ε� 1
and, both for the original model and its WTA approximation,
each time a charge transfer is attempted, prior to this an
additional survival test is applied, passed with probability
(1 − ε) and failed with the complementary probability ε. A
charge unit having failed such a test is discarded from the
system, whereas a unit having passed continues its evolution.
The correct behavior of the system is recovered upon letting
ε→ 0. Writing x⇒ y iff either x y or x⇔ y and putting
N⇑(y) := {z ∈ P%, y ⇒ z} we see that, in full analogy to
(7), here we have

Φ(x) = α+ (1− ε)
∑
y⇒x

Φ(y)

card[N⇑(y)]
. (15)

Since the difference of cardinalities card[N⇑(y)] and
card[N↑(y)] is of order O(δ) = O(1) by our construction
(recall that δ stays fixed as % varies), their asymptotics are
equivalent as long as both these expressions are � δ, that
is to say as long as %(1 − µx) � δ. Moreover, for similar
reasons, summing over y ⇒ x rather than over y  x as in (7)
above, makes non-negligible difference only if %µx = O(δ)
(recall that %µxγ is the expected cardinality of N↓(x), cf.
(11)). Consequently, as in (12) we get

φ(s) = α+(1−ε)
∫ s

0

φ(t)

(1− t)
dt, %s� δ, %(1−s)� δ, (16)

whence

φ(s) =
C

(1− s)1−ε , %s� δ, %(1− s)� δ, (17)

where the order of the constant C can be readily estimated as
follows. We check how many charge units may, on average,
visit a minimal point x ∈ P%, that is to say a point x with no
y  x, y ∈ P%, whence in particular µx ≈ 0. Clearly, at the
initial stage of the dynamics we can expect visits of mean α
charge units with their initial assignment at x. Next, each of
the O(α%) units present in the system survives on average 1/ε
jumps (geometric lifetime with mean 1ε), at each stage having
the probability O(δ/%) of hitting a vertex connected to x by
an exceptional connection, and the probability O(1/(γ%)) of
following this connection. This yields C ≈ φ(0) = α+O(α% ·
1/ε·δ/%·1/(γ%)) = α(1+O(δ/(εγ%))). Assuming that ε%� 1
we end up with C ≈ α and thus, as in (14),

G(k) ≈
∫
{s, φ(s)≥k}

ds ≈ (α/k)1/(1−ε). (18)

Letting %→∞ and ε→ 0 yields therefore
Theorem 2: The charge flow graph induced by the modified

model with long axonal delays is, in large λ, % and small ε
asymptotics, scale-free with exponent 2, with overwhelming
probability.

VI. NON-HOMOGENEOUS SET-UP

Consider now a situation where the distribution of neuronal
spatial locations is no more isotropic and neither is their con-
nectivity function. We argue below that also in these cases the
scale free behavior of the charge flow graph is usually present
and the power law exponent is again 2. Our argument is quite
sketchy because the considered general scenario includes a
plethora of specific models, yet for many of them the following
argument is valid in large density asymptotics. For simplicity
we do not introduce exceptional connections here and we place
ourselves in context of the approximating WTA dynamics,
usually available under reasonable regularity conditions but
with support marks no more identically distributed and, to
the contrary, with their laws strongly depending on spatial
locations. Requiring that (5) be asymptotically valid, we see
that we keep the property that the fraction of neurons with
support marks in [s, s+ds] is ds. Next, we write γ(t, s), t < s,
for the probability that for randomly chosen x with µx = t
and y with µy = s we have x y – whereas in the isotropic
case we always had γ(t, s) ≡ γ/ς(Sd−1), here this is no more
the case and the function γ(s, t) may exhibit quite non-trivial
behaviors. Repeating the argument leading to (12) we get the
following equation, valid under many reasonable collections
of regularity conditions:

φ(s) = α+

∫ s

0

φ(t)γ(t, s)∫ 1

t
γ(t, u)du

dt = α+

∫ s

0

φ(t)

η(t, s)
dt, (19)

where

η(t, s) :=

∫ 1

t
γ(t, u)du

γ(t, s)
, t < s.

In the isotropic case we always had η(t, s) ≡ 1− t, which is
no more valid in the general non-homogeneous situation. A
simple analysis of the integral equation (19) shows that the
behavior of φ is usually determined by the properties of η,
and thus of γ, in the vicinity of (1, 1). Further, the intuitively
natural situation is that the limit lims,t→1 γ(s, t) exists and is
positive. We have then η(t, s) ≈ 1− t for t close to 1, which
does again yield G(k) ∝ k−1 and hence the charge flow graph
is scale-free with exponent 2. Clearly, in general the equation
(19) does also constitute a hint how to construct a ’anomalous’
system where the scale free property of the charge flow graph
fails. However, we believe that these are exceptional situations
and we are not aware of natural systems where such anomalies
would occur.

VII. NUMERICAL SIMULATIONS

A. Geometric model

In this subsection we present results of numerical simu-
lations for the geometric spike flow model. We work with
the basic isotropic set-up introduced in Section II. Neurons



8

were randomly placed on two-dimensional sphere with radius
varying up to 20. The expected density is 10 nodes per square
unit of surface, that gives up to 50000 neurons. The synaptic
connectivity function g(·), as considered in Section II, is
defined here as

g(r) =

{
1 r ∈ [0, 1)
1
rα r ≥ 1

(20)

where alpha is fixed at value α = 2.5. In particular, this
ensures that the network is connected with overwhelming
probability. The power-law form of the connectivity function
was chosen motivated by qualitative empirical reports in [17].
It should be recalled at this point that although the real-
world form of the connectivity function is still a subject
of ongoing discussion and may depend on the particular
anatomical region, see ibidem and [15], our theory does not
depend on a particular shape of g(·). The value of inverse
temperature β has been set to 1000, which results in rejecting
vast majority of changes leading to higher energy states.

The resulting final network state output by simulation
included less than 400 units (out of 50000, that is about
0.8 per cent) whose charge was not completely depleted and
which are therefore natural candidates to be considered as the
ground units of the network, see Section III. Recall that in
a fully connected network there is precisely one such ground
unit, a single node storing all charge present in the network.
In our present geometric situation though there are usually
several ground units, enjoying exceptionally high supports
(3). Formally to determine when to stop the simulation we
should use the criterion [Saturation] at the end of Section III,
however for practical reasons we have fixed a large enough
number of iterations instead (up to 109), which allowed us
to avoid the costly run-time checks and gave very good
convergence to saturation, see the data below.

The cumulative log-log plot of spike flow graph in-degrees
vs their frequencies, produced by simulation, is depicted in fig.
2(a). We observe dramatic breakdown of occurrence frequency
for high in-degree nodes. This behavior seems explicable when
we take into account that high in-degree units are likely not
to be connected, which makes the analysis leading to our
crucial equation (13) fail to work for the highest support elite –
effect discussed in the derivation of (13) and made explicit by
validity bounds imposed on the support variable s there. In the
middle part of the plot strongly marked linear dependency can
be observed. Note that in terms of the original data this reflects
a power law with exponent given by the slope of the straight
line in the log-log plot. Due to the afore-mentioned abnormal
behavior of the plot for highest support elite, a naive least
square estimate for this slope, attaining values a ' −1.2964, is
dominated by outlying high in-degree values and also distorted
by the statistics of low bulk neurons of supports too low
to guarantee WTA-type evolution. However, as discussed in
detail in the theoretical part of this paper, we are interested
in the behavior of neurons exhibiting average characteristics
and thus we reject the highest elite and lowest bulk outliers
and only concentrate on the statistics of the clearly pronounced
straight line in the middle of the plot. In our case, due to finite
simulation size, quite modest compared to real-world neural

system sizes, this corresponds to rejecting about 40 per cent
of the data with highest flow values, whereupon LS returned
slope parameter a ' −1.063 which is a good approximation
of the theoretical value −1 for the slope of cumulative log-
log plot. The cutoff range has been chosen ’manually’ to get
the best linear fit. Generally, it should be emphasized that the
greater network size is, the smaller cutoff is needed and better
approximation is returned by the simulation.

Interesting structures, emerging during simulation, are high-
est elite charge flow graphs centered at individual ground elite
nodes, i.e. sets of edges, through which large amount of charge
flows towards a ground elite unit and nodes which transfer
their charges via those edges. It turns out that the entire flow
graph centered at a high-support unit usually covers nearly the
whole network (see fig. 4(a)). This confirms predictions about
the cooperation of elite in draining charge from the bulk units.
Therefore, to get an interesting picture we should impose a
size limit for a single elite node charge flow graph and only
consider edges of highest transfer counts. Having applied these
for an individual graph we obtain an ,,attraction basin” of an
elite node (figures 4(b), 4(c)). Basins tend to repel one another,
but they are not completely separated because charge flow
from bulk neurons branches out among elite units.

Fraction of accepted charge transfers can vary depending
on network size and iteration number, yet always rapidly
decreases in the course of simulation, marking the convergence
to equilibrium/saturation, and hardly ever exceeds two per cent
at later stages of network’s evolution. Figure 3(a) depicts these
fractions collected over simulation periods (one per cent of
consecutive iterations) vs period number, this value rapidly
approaches zero (in fact, interestingly enough, we observed
it decays as a power function). Fluctuations observable on
3(b) seem to originate from local metastable states visited by
the system in the course of the dynamics (see Section III) as
well as to zero-to-zero connections removal from the network
(which speeds up computation while not affecting the WTA
dynamics).

Due to high inverse temperature, number of transfers result-
ing in energy increase is about few hundreds overall, which is
0.01−0.1% of all accepted changes and thus can be considered
negligible.

B. Mean field model with long range connections

In this section we deal with long range connections, whose
theory has been given in Section V above, here restricting our
simulation to mean field set-up (connectivity function g ≡ 1)
which was necessary at this stage of our work due to lack of
computational power to simulate significantly larger networks
as needed to provide statistically relevant outcomes for set-
ups where non-trivial connectivity function g and long range
connections co-exist (we believe the order of hundreds of
thousands would be required). The detailed numerical results
for the mean field model in its most basic form are available
in [28], [35]. The instances of the mean field model are much
smaller that those presented in previous subsection due to all-
to-all connectivity and memory limitations (5000 vertices is
a reasonable limit for such simulations), yet this is already
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Neurons Connections Iterations Slope Geometry Units with charge
9k 580k 70M -1.062 S2 0.0065
9k 560k 100M -1.060 S2 0.01

11k 700k 100M -1.100 S2 0.009
12k 800k 100M -1.118 S2 0.008
12k 800k 150M -1.100 S2 0.009
12k 800k 150M -1.053 S2 0.0087
13k 960k 150M -1.066 (0..d)3 0.008
19k 1.3M 150M -1.082 S2 0.011
21k 1.7M 200M -1.170 (0..d)3 0.008
21k 1.7M 200M -1.129 (0..d)3 0.01
32k 2.1M 300M -1.102 S2 0.0076
33k 2.7M 200M -1.096 (0..d)3 0.019
40k 3.4M 500M -1.066 (0..d)3 0.0065
45k 3.0M 500M -1.103 S2 0.0082
48k 4.2M 800M -1.063 (0..d)3 0.0056
48k 4.2M 600M -1.143 (0..d)3 0.019
50k 3.4M 800M -1.080 S2 0.016
50k 3.5M 800M -1.058 S2 0.0078
58k 4M 900M -1.091 S2 0.0082
58k 5M 1G -1.081 (0..d)3 0.006

TABLE I: Results of simulation. Table columns include number of neurons, number of connections, number of iterations,
approximated slope value, network geometry (S2 is a sphere, (0..d)3 is three-dimensional cube) and fraction of nodes storing
all network charge.
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Fig. 5: Degree distributions (complementary CDF, log-log plots) of systems of various sizes plotted together. The left figure
shows the original mean field spike flow model, where the power law is well pronounced for a variety of sizes. The right one
shows the model equipped with Erdős-Rényi fraction of approximately 3 edges/node. Note that the plot curvature decreases
as the number of vertices gets increased. While small systems clearly reveal light tailed decay in vertex degrees, the plot
for a system of 5000 vertices (red) is close to linear with the required slope 1 and thus resembles the predicted power law
dependency.

enough to confirm our theoretical predictions because the
convergence of network’s asymptotic characteristics is much
faster here due to the fact, that with more degrees of freedom
and all to all connectivity the ground states are easier to find.

Below, we present the degree histograms of the mean
field model equipped with random long range connections as
discussed in Section V. These connections can be regarded
as an Erdős-Rényi random graph imposed on the original all-
to-all connectivity structure, along whose edges the charge
transfers always get accepted (these exceptional edges always
conduct charge, neglecting the energy factor). Since in such

a case the simulation might not converge to a ground state
(the charge might cycle forever, distorting the structure of
the resulting charge flow graph), the amount of charge was
slightly reduced at every time step (each charge unit had a
finite geometric lifetime) - this trick as mentioned in Sec-
tion V ensures that the system does not over-saturate, while
preserving all essential features of the dynamics. The figure
4 shows complementary cumulative distributions (CCFD) of
systems of three sizes (500, 1000 and 5000 units) under
various densities of the exceptional connections. The power
laws are fairly well preserved even if the exceptional edges
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Fig. 3: Fraction of accepted charge transfers in during simu-
lation progress.

form a giant component (there is more than one edge per
node) and are nearly intact for sparser components (below the
giant component threshold). At some density the power law
breaks down because the simulated system’s size is not high
enough for the number of exceptional connections to remain
negligible. As expected, bigger systems can accept more dense
random components and still display power law connectivity
as seen in figure 5. More details of the presented numeric
results can be found in [39].

As already mentioned above, we haven’t run a combined
simulation in which both geometry and exceptional connec-
tions are present. The point is that we expect that, since
both these factors produce strong finite size effects (boundary
distortions to the range of node degrees obeying the power
law), the required size of simulated system that could reveal
the scale-free connectivity in a statistically significant way
might be very large.

In particular this could be the reason why certain functional
networks inherit some structural properties usually found in
scale-free networks [24], but lack a well pronounced power
law dependence in the degree distribution.

VIII. CONCLUSION

In this paper we have introduced a geometrically-embedded
spin glass type theoretical model for mesoscopic scale brain
functional networks, essentially extending the mean-field set-
up of [35]. We have proved mathematically and verified
numerically that, in large system size asymptotics, our model
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Fig. 4: Sample (out) degree distributions (complementary
CDF, log-log plots) of mean field charge flow systems with
various density of Erdős-Rényi fractions. Clearly for the
smaller system the presence of Erdős-Rényi fraction with
approximately 2 edges/node already seriously disturbs the
power law. The bigger system maintains scale-free properties
until the density of E-R fraction reaches approximately 5
edges/node.

results in scale-free functional networks in agreement with
voxel-level fMRI-based empirical findings [17]–[20]. The cor-
responding power law exponent is 2, which is equal to or
not far from the exponents reported there. Moreover, we
also have shown that this exponent does not depend on
particular choice of the underlying structural connectivity
function determining the embedding and even remains mostly
invariant under additional modifications of model’s geometry
and dynamics as discussed in Sections V, VI and Subsection
VII-B. These features are indicative of self-organized critical-
ity and universality, in conceptual agreement with [29], [30],
although their considerations involve essentially different scale
of network units. One further idea in common with [29], [30]
is that whereas the dynamics underlying the real-world brain
functional networks is extremely intricate and complicated, its
essential large scale emergent features can be described by
a rather simply formulated mathematical model at criticality
(a model in the same universality class in the language of
statistical physics). In our theoretical study we have also
determined validity bounds of the power law connectivity
statistics in finite size systems. These bounds are felt in
our simulations and result in cut-off power laws when the
number of units is limited, which is reminiscent of the cut-off
phenomena reported in [21]–[23]. It should be emphasized at
this point that the universality claim we make refers only to the
presence of scale-freeness and the corresponding exponent, it
is clear other important asymptotic features of the network can
and often do essentially depend on the underlying connectivity
function. A number of further crucial properties have been
reported empirically for brain functional networks [15] and it
is the subject of our further research in progress to verify these
properties and their degree of universality for our model with
various geometric embeddings.
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[28] F. Piȩkniewski, “Spontaneous scale-free structures in spike flow graphs
for recurrent neural networks,” Ph.D. dissertation, Warsaw University,
Warsaw, Poland, 2008. [Online]. Available: http://www.mat.umk.pl/
∼philip/dissertation.pdf

[29] D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like
dynamics in large-scale functional brain networks,” Physical Review E,
vol. 79, p. 061922, 2009.

[30] M. G. Kitzbichler, M. L. Smith, S. R. Christensen, and E. Bullmore,
“Broadband criticality of human brain network synchronization,” PLoS
Computational Biology, vol. 5, p. e1000314, 2009.

[31] R. Albert and A.-L. Barabási, “Statistical mechanics of complex
networks,” Reviews of modern physics, no. 74, pp. 47–97, January
2002. [Online]. Available: http://arxiv.org/abs/cond-mat/0106096

[32] M. Newman, A.-L. Barabasi, and D. J. Watts, The Structure and
Dynamics of Networks: (Princeton Studies in Complexity). Princeton,
NJ, USA: Princeton University Press, 2006. [Online]. Available:
http://press.princeton.edu/titles/8114.html

[33] F. Chung and L. Lu, Complex Graphs and Networks (Cbms Regional
Conference Series in Mathematics). Boston, MA, USA: American
Mathematical Society, 2006.
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