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Abstract— In recent two decades neuroscience and computa-
tional intelligence has experienced a large progress, with some
new important concepts being developed like spiking [1] and
dynamical neurons [2], [3]. Due to increase in computational
power available for researchers, many impressive simulations
have been carried out and some other ones are yet to come.
These developments in CI have occurred simultaneously with
some very interesting theoretical and empirical results in random
graph theory - the introduction of small-world [4] and scale-free
[5], [6] models, and investigation of their properties. Based on
results already published by other authors [7], [8] we believe
that the edge of these two dynamically growing disciplines
might be an interesting field for research. In this paper we
introduce a simplified model of spike flow network which in
some details resembles a recurrent neural network with stochastic
dynamics. We argue that within this setup a scale-free network
structure emerges as a natural consequence of model structuring
principles and we provide numerical evidence supporting this
claim. Further in the paper we investigate a number of interesting
properties of this network and discuss some consequences of this
result.

I. INTRODUCTION

The concept of scale-free networks has recently emerged
as a response to an increasing demand for theoretical tools
providing a unified description of a wide variety of complex
network topologies displaying the evidence of strong struc-
turing principles co-existent with a considerable degree of
randomness, see [9] for a comprehensive survey. A distinctive
feature of a scale-free network is that the degree distribution
of its nodes follows a power law, thus lacking a characteristic
scale in the language of statistical mechanics, whence the
name. The presence of such power laws has been observed for
a broad class of networks, prominent examples including the
World Wide Web [10], science collaboration networks [11],
citation networks [12], ecological networks [13], linguistic
networks [14] as well as cellular metabolic networks [15] and
many other ones, see [9]. An important property enjoyed by
scale-free networks, although non-distinctive as shared also
with other classes of networks including the classical Erdős-
Rényi random graphs, is the so-called small-world property
stating that the average path length between two nodes in
the graph is small, which in formal terms usually means
logarithmic dependency on the size of the system, see [9].
The small-world property co-present with strong structuring

principles has been reported in the topology of certain natural
neural networks as well as other networks of biological
character, [4]. On the other hand, many artificial recurrent
neural networks are built on complete graphs with no scale-
free property. In this context we found it natural to ask whether
in some cases the scale-free property may emerge for the
corresponding spike flow graph. While postponing the precise
formulation of this question until our model is introduced
below, we re-phrase it here rather informally by asking if the
scale-free property can be recovered by neglecting or ascribing
small usage frequencies to those network connections which
are seldom used to transmit neuronal spikes and multiply
counting those used often enough, with the resulting graph
with weighed edges referred to as the spike flow graph in the
sequel.

To put the above questions in formal terms we consider a
stochastic recurrent neural network consisting of N neurons
assuming states labeled by natural numbers σi ∈ N =
{0, 1, . . .}, i = 1, . . . , N, interpreted as neuronal potentials
below. The network is built on a complete graph in that there
is a connection between each pair of neurons σi, σj , i 6= j,
carrying a real-valued weight wij ∈ R satisfying the usual
symmetry condition wij = wji. The values of wij are drawn
indepedently from the standard Gaussian distribution N (0, 1)
and are assumed to remain fixed in the course of the network
dynamics. A configuration σ̄ = (σi)i≤N of the network is
assigned its Hamiltonian given by

H(σ̄) :=
1
2

∑
i 6=j

wij |σi − σj |. (1)

The dynamics of the network is defined as follows: at each
step we randomly choose a pair of neurons (σi, σj), i 6= j,
and denote by σ̄∗ the network configuration resulting from
the original configuration σ̄ by decreasing σi by one and
increasing σj by one, that is to say by letting a unit of potential
transfer from σi to σj , whenever σi > 0. Next, if H(σ̄∗) ≤
H(σ̄) we accept σ̄∗ as the new configuration of the network
whereas if H(σ̄∗) > H(σ̄) we accept the new configuration
σ̄∗ with probability exp(−β[H(σ̄∗) − H(σ̄)]), β > 0, and
reject it keeping the original configuration σ̄ otherwise, with
β > 0 standing for an extra parameter of the dynamics, in the
sequel referred to as the inverse temperature conforming to the
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usual language of statistical mechanics. Below we shall write
πi→j(σ̄) for the above specified probability that for chosen
i and j the potential transfer proposal from σi to σj gets
accepted in configuration σ̄. Observe that the sum

∑
i σi of

neuronal potentials is preserved by the dynamics and that, in
the course of dynamics with some initial configuration σ̄0,
any other σ̄ with

∑
i σ0

i =
∑

i σi is eventually reached with
positive probability. Consequently, upon standard verification
of the usual detailed balance conditions, we readily see that the
stationary states of the above dynamics are the distributions

Pn(σ̄) =

{
exp(−βH(σ̄))P

σ̄′,
P

i σ′
i
=n exp(−βH(σ̄′)) , if

∑
i σi = n,

0, otherwise
(2)

and their convex combinations. In particular, our model bears
some resemblance to the usual stochastic Boltzmann machines
[16], with the weights wij indicating the extent to which the
system favours the agreement (for positive wij) or disagree-
ment (for negative wij) of the neuronal states σi and σj .
There are important differences though, one of them being
the unbounded state space, the other one that precisely two
neurons are affected in each update with clearly determined
source and destination of the potential flow. This was in fact
one of the features aimed at when constructing the model
above. For the network dynamics running during a period
[0, T ] we are now in a position to define the spike flow graph to
be the complete directed graph with vertices corresponding to
the neurons σi, i = 1, . . . , N and whose edges carry numbers
(edge multiplicities) Fi→j indicating how many times in the
course of the dynamics the potential flow occurred from σi

to σj . Note that for T large enough to ensure that the system
gets close to its equilibrium and that each edge is processed
a statistically significant number of times we have

Fi→j/T ≈ 1
N(N − 1)

Enπi→j(σ̄) (3)

with En standing for the expectation operator under Pn as
given by (2) and where n is the total potential preserved
in the course of the dynamics. In particular, the randomness
of Fi→j/T vanishes for large T where it gets close to a
deterministic function of the network and of n, the only
remaining randomness coming from the weights wij . The out-
degree of a neuron σi is now defined as dout(i) :=

∑
j Fi→j

and, likewise, the in-degree din(j) :=
∑

i Fi→j . The main
question considered in this paper is whether the so-defined
spike flow graph is scale-free in that its in- and out-degree
distributions follow power laws, that is to say P(din/out(i) ≈
x) ∼ cin/outx

−γin/out for a randomly picked node i. This
conjecture is strongly motivated by the fact that the dynamics
of our system seems to exhibit a version of preferential
attachment mechanism, as discussed in Sections VII and VIII
of [9], in the sense that a node with high out-degree dout is
very likely to often reach high potentials in the course of the
dynamics (because it can afford to spend a lot of potential
transfering it to other nodes) hence if a next potential transfer
is observed in the system to a given destination node, it is

more likely to come from a node of high out-degree than from
one with low out-degree which is in its turn rather unlikely
to store high potential. Likewise, it is natural to expect that
large in-degree of a node should usually be associated with
frequent reaching of high potentials and consequently with
large out-degree as well. Our numerical experiments seem
to strongly confirm the above argument, see Figures 3, 4,
6 and 5 below, and it is known that preferential attachment
very often yields the scale-free property, see [9]. The fact that
the number of nodes is fixed in our network as opposed to
the classical Albert-Barabási network growth model does not
seem to lead to a problem because, although the number of
nodes does indeed stay fixed, the way in which the spike flow
graph is constructed amounts to allowing for multiple edges
and unlimited addition of new edges.

In the sections below we present simulations and numerical
evidence supporting the above scale-freeness conjecture for
spike flow graphs.

II. SIMULATION SETUP

The simulations were carried out for different system sizes
varying from n=100 to 2100 nodes (simulating bigger net-
works takes considerably more time: since every step requires
recomputing the energy of the system, assuming that the
required number of steps is O(number of edges) = O(n2)1

implies that the simulation complexity goes up to O(n3))
although instances of about 2000 nodes produce graphs whose
properties are quite consistent with those of about 500 or
less, and hence simulating bigger samples does not seem to
provide any qualitatively different results. The precise length
of a simulation run was set to 10 · |E| where |E| stands for
the number of edges, i.e. |E| = |V |2. Weights were randomly
sampled from standard normal distribution, initial value of
potential in every node was fixed to a small natural number
(in most cases 5, but in general changing this number within
a reasonable range did not affect the simulation too much2).
We fixed β = 1 (inverse temperature) which corresponds to
predominantly energy-driven transitions and rather negligible
entropic factor, and we look forward to studying this model for
other (higher) temperatures in the future. In our present setup
the system seems to converge rapidly to a relative equilibrium
whereupon the potential transfers and energy changes become
considerably less frequent. This results in a rather sparse
spike flow graph obtained in simulation and hence the chosen
number of simulation steps can be claimed to yield statistically
significant outcomes for medium and large in- and out-degrees
only whereas for the nodes of very small degree (0,1,2) a
positive bias (oversaturation) is likely to be present due to
the insufficient number of iterations (see e.g. Figure 1 below).
This is not a problem from the viewpoint of our purposes
though, since anyway the crucial information about the scale-

1It is necessary to give each edge a chance to be chosen at least a couple
of times in the course of the simulation.

2Some subtle impact can be observed though as we discuss in Section III
below.
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Fig. 1. Log-plot of the in-degree distribution (left) and out-degree distribution
(right) for the original spike flow network obtained from the simulation
(dropping multiple edges affects this image only slightly). Clearly these
distributions follow a power law (linear fit marked).

free nature of the spike flow graph is extracted from the
properties of higher order nodes.

In Section III below, apart from verifying the power laws
for in- and out-degrees of the nodes and analyzing the depen-
dencies between the in- an out-degrees and mean potentials,
whose nature seems to be fairly independent of the simulation
length, we also study the properties of the spike flow graph
which clearly do depend on the particular length of simulation
run: these include the average path length between two nodes
(decreases as the spike flow graph saturates), mean clustering
coefficient (increases as the graph saturates) etc. This does
make sense as aimed at showing that the onset of the small-
world and high clustering properties is observed even in
relatively early stages of simulation, thus providing a further
support of our scale-freeness conjecture for spike flow graphs.
Note also that when determining below certain characteristics
of the spike flow graph (average path length, clustering co-
efficient, spectral properties) we drop the multiplicities Fi→j

ascribed to edges, simply by declaring an edge i → j present
in the graph if Fi→j > 0 and absent otherwise.

III. SIMULATION RESULTS

The most interesting plot obtained in our simulations, on
which the main conjecture stated in this paper depends, is
the degree distribution. The spike flow network arising in
our setting is directed, and so the in-degree and out-degree
distributions are depicted separately (Fig. 1). The obtained
logarithmic plot is close to linear for higher order nodes, thus
confirming the power law hypothesis P(din/out(i) ≈ x) ∼
cin/outx

−γin/out for a randomly picked node i. Simple linear
fit on the log-plot was used to estimate the exponents in these
power laws. It came out that in-degree exponent γin ≈ 1.3,
whereas out-degree exponent γout ≈ 2.0. These approxima-
tions are rather rough, since the tail of the distribution is
scattered thus biasing the outcome exponents, but one can say
with a high degree of confidence that γin < γout and that
γin < 2. Scale-free networks with exponents within range
of (1, 2) were investigated in [17]. It is worth mentioning
that in all instances of the simulation the output spike flow
network had only one connected component, which was not
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Fig. 2. Spectral density for the analyzed network (after dropping edge
directions) and for the corresponding Erdős-Rényi random graph with the
same edge density (exhibiting the usual semicircular law) for comparison.
This triangle-like spectral density has been found characteristic for scale-free
networks, see Section VII.D.4 in [9].

obvious a priori since the obtained networks are rather sparse
and the dynamics does not immediately imply that a single
connected component should rapidly emerge (although the
theory guarantees that it does happen at some point since,
with the simulation length tending to ∞, the spike flow graph
becomes eventually fully connected).

Another interesting tool for exploiting the properties of a
graph is its spectrum, defined as the set of eigenvalues of
its adjacency matrix or Laplacian matrix. The more advanced
spectral graph theory is far beyond the scope of this article (see
e.g. [18] for comprehensive introduction), we only mention
here the spectral density which is, very roughly speaking,
the histogram of eigenvalues (taking their multiplicities into
account ). It is well defined for undirected graphs (symmetric
matrices) so, in the case of the investigated model, multiple
edges and their directions have been neglected. Figure 2
depicts the spectral density of the considered spike flow
network and the spectral density of the corresponding random
Erdős-Rényi graph (the same edge density) for comparison.
The latter exhibits semicircular (Wigner’s) law [19], [20], [21],
whereas triangle shaped spectral density (red plot on Fig. 2)
is expected for scale-free networks (see [22]).

Next interesting feature of these networks is the dependency
between in and out degree distributions. In the case of the con-
sidered network there is a very clear, nearly linear dependency
(Fig. 3), which is only slightly disturbed after dropping multi-
ple edges3 (Fig. 4). This gives some insight into the structure
of spike flow networks and suggests that nodes with high in-
degree have usually high out-degree as well, as conjectured
in the discussion of the preferential attachment phenomenon
preceding Section II. This might have been expected, since
as we argued in the introduction above, nodes with high in-
degree should possess more potential, and therefore should
be more likely to give that potential away, yet the striking

3We have noticed that in general the presence or absence of multiple edges
does not seem to considerably affect the studied qualitative properties of spike
flow graphs.
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Fig. 3. Dependency between in- and out-degree in the original network
obtained from the model (with multiple edges between pairs of nodes
allowed). The relation is almost linear, with a constant below 1. This explains
a group of outliers on the top of the graph - the sum of outgoing and incoming
edges in a graph must be equal.
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Fig. 4. Dependency between in- and out- degree after dropping multiple
edges.

regularity of this dependency was a pleasant surprise and
gives us motivation to some further analytic research. Another
support of the conjecture that high potential translates into
high in/out-degrees is given by figures 5 and 6. Depicted
dependencies are again very regular and seem to follow power
laws, which is of its own intrinsic interest and gives some
further motivation for more detailed investigations.

The clustering coefficient (see Appendix) reveals the typical
local structure of a graph. For the considered networks this
coefficient is approximately a magnitude bigger than for the
corresponding Erdős-Rényi random graphs (see Fig 9), there-
fore, taking into account the relative sparseness of the spike
flow networks, they might be described as well clustered. Even
more interesting was the dependency between node degree
and average clustering coefficient (Fig. 7). This dependency
is constant for random and most scale-free networks (see box
2 in [23]), follows a power law with a negative exponent for
hierarchical networks whereas in our case it is an increasing
function. This is curious as it suggests that vertices with high
degree in spike flow graphs have neighbors that ”contact each
other” more frequently than neighbors of vertices with low
degree.
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Fig. 5. Dependency between the average potential during the simulation and
the out-degree of a vertex (log-plot). There is a clearly marked power-like
dependency.
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Fig. 6. Dependency between the average potential and the in-degree of a
vertex (log-plot). Again this dependency is quite well pronounced and power-
like with some unavoidable exceptions on the right side of the plot.
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Fig. 7. This figure displays a plot of the clustering coefficient against vertex
degree. The blue plot depicts the dependency for the analyzed network (after
dropping edge directions) and the black one shows corresponding relation in a
random Erdős-Rényi graph with the same connectivity density for comparison.
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Fig. 8. Clustering coefficient of the network (after dropping multiple edges
and directions) as a function of the system size. Note that the clustering
coefficient of spike flow networks obtained from our model is considerably
larger than for the corresponding random networks. The general decreasing
tendency can be explained by growing sparseness of larger spike flow graphs.

As already mentioned before, the results coming from
different network sizes were quite consistent. This is displayed
in figures 8 and 9 which show the dependency of clustering
coefficient, average path length and connectivity density on
the system size. Figure 9 shows that the small-world property
for the spike flow graph emerges quickly in the course of the
simulation: indeed, in the examined system the average path
length between two vertices is only slightly larger than in the
corresponding Erdős-Rényi graph. Recall that the connectivity
density is simply the number of edges (after dropping multiple
edges) divided by the number of edges in the corresponding
fully connected graph (this is exactly the probability parameter
in the Erdős-Rényi model). The monotone decrease of this
quantity in Figure 9 is due to the fixed amount of potential
available for every node. We plan to carry out some further
computations in our future work, varying the amount of poten-
tial to achieve and explore different relations of connectivity
density and size (assuming the number of steps in simulation
is proportional to the number of edges).

IV. CONCLUSION

In this paper we show that in certain recurrent neural
networks the scale-free structure emerges spontaneously for
the corresponding graphs constituted by their most often used
connections. Even more, evoking the notion of preferential
attachment apparently present in some such systems, we argue
that this may happen as a natural consequence of the usual
stochastic dynamics. To achieve these goals we construct a
particular potential flow neural network – while sharing many
features with usual Boltzmann machines our model allows
for storing arbitrarily large potential in a single neuron, thus
endowing it with a kind of ’memory’ which seems crucial
for the emergence of preferential attachment-like mechanism.
We believe that similar scale-free behavior for (appropriately
defined) spike flow graphs should be present in many other
(more usual) types of recurrent networks as well, yet we
expect that often it can arise only at the level of appropriately
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Fig. 9. Average path length as a function of the system size. One can notice
that the average path length in the analyzed network only slightly deviates
from the average path length in Erdős-Rényi random graph with the same
connectivity density. This shows that the considered spike flow networks have
a small-world character. The red line displays the connectivity density, which
shows that the considered graph becomes more and more sparse as the systems
grows, still however having one connected component only.

chosen neuronal groups4 rather than single neurons unless the
architecture of a single unit is complicated enough to exhibit
some memory/knowledge of its prior neural activity. These and
related issues are the subject of our present work in progress.

APPENDIX

A. Spectral density

Any graph G with n nodes can be represented by its
adjacency matrix A of n × n elements Aij whose values
are Aij = 1 if there is an edge from node i to j and
Aij = 0 otherwise. For undirected graphs adjacency matrices
are symmetric and therefore have real eigenvalues. The set
of eigenvalues of the adjacency matrix A corresponding to a
graph G is called the spectrum of the graph G. Eigenvalues
contain a lot of interesting information (for example the
multiplicity of 0 as eigenvalue coincides with the number of
connected components etc.). To get a general idea of spectral
properties of a graph it is useful to define its spectral density:

p(λ) =
1
n

n∑
j=1

δ(λ− λj) (4)

which may approach a continuous function as n → ∞.
Spectral density has interesting links with graphs properties,
for example k− th moment of spectral density is the number
of paths of length k that return to the their origin (possibly
visiting other nodes multiple times). Alternatively (but not
equivalently) graph spectra can be defined as sets of eigen-
values of (normalized) Laplacian matrix. Laplacian matrix is
constructed as follows:

L = D −A (5)

4This needs to be emphasized, since neural network of a worm C. elegans
proved not to follow a power law on the level of single neurons (axons), see
[24], [25] for details.
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where A is the adjacency matrix and D is a diagonal matrix
with (i, i)− th entry containing the degree of node i. Matrix
L can be normalized by

L = D−1/2LD−1/2 (6)

so that diagonal values of L are all equal 1. This definition
relates better to graph invariants (see [18] for more details).

B. Clustering coefficient

Clustering coefficient was introduced in [4] to reveal general
clustering properties of a graph. For a node i its clustering
coefficient is defined as follows:

Ci =
2|{ej,k}|
di(di − 1)

(7)

where nodes j and k are adjacent to i, and di denotes degree of
i. Roughly speaking it is the number of connections between
the neighbors of the node i divided by the number of all
possible connections between the neighbors of i. Clustering
coefficient can be alternatively defined as

Ci =
2λG(i)

di(di − 1)
(8)

where λG is the number of triangles on vertex i. This definition
suggests a quite efficient algorithm of computing clustering
coefficient, since the number of triangles coming from a node
(assuming there are no loops of length one at vertices) is
simply the corresponding entry on the diagonal of A3, where A
is the adjacency matrix. We assume that Ci = 0 if di = 0 and
Ci = 1 if di = 1. The average clustering coefficient of the
whole graph is simply the average of coefficients computed
for every node and hence it coincides with the normalized
trace of A3. Other interesting features of a graph include the
information on how clustering coefficient is distributed over
vertices of different degrees and, likewise, how the degree is
distributed over nodes having clustering coefficient within a
fixed range.
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T. Vicsek, “Evolution of the social network of scientific collaborations,”
Physica A, vol. 311, no. 4, pp. 590–614, 2002.

[12] S. Redner, “How popular is your paper? an empirical study of the citation
distribution,” European Physical Journal B, vol. 4, no. 2, pp. 131–134,
1998.

[13] J. M. Montoya and R. V. S. V., “Small world patterns in food webs,”
Journal of Theoretical Biology, vol. 214, no. 3, pp. 405–412, February
7 2002.
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