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Toruń, Poland
E-mail: lrybicki@mat.uni.torun.pl

Abstract— Multi Layer Perceptron networks have been suc-
cessful in many applications, yet there are many unsolved
problems in the theory. Commonly, sigmoidal activation func-
tions have been used, giving good results. The backpropagation
algorithm might work with any other activation function on one
condition though - it has to have a differential. In this paper we
investigate some possible activation functions and compare the
results they give on some sample data sets.

I. INTRODUCTION

MLP networks are popular due to their simplicity in imple-
mentation and quite satisfying results they give. In some cases
though, MLP networks fail to provide a good solution. This
can happen due to bad architecture, insufficient number of
neurons or simply insufficient number of training epochs. To
overcome such problems a lot of work needs to be done before
the training process can be started. This includes constructing
a good architecture, initialization of weights, choosing the best
representation of data etc.

Another thing that affects the training process is the choice
of the transfer function. The back-propagation algorithm is
quite universal in this case, any function can be chosen as
long as it has a derivative. There are however some obvious
conditions that a good activation function should meet.

First, the function and it’s derivative should be easy to
compute. Since a look up table with an interpolation scheme
can be used, the computation problem can be easily overcome.
Secondly, the function should have an extensive linear part in
order to speed up training and obtain satisfying convergence
in less epochs.

Commonly the logistic sigmoidal function is used, because
it’s derivative is one of the easiest to compute, but there
is a whole class of other sigmoidal functions that can be
implemented, broadening the selection of potential transfer
functions that can be used to solve a given problem. In fact
our work shows that the log-exp function can give significantly
better results than the logistic sigmoidal function, but still a
lot of research needs to be done in that field.

The transfer functions have yet another important inter-
pretation. They can be regarded as fuzzy logical rules that
separate different categories. By changing the transfer function
we change the decision profile. That, combined with the

differences in training process, can have a great impact on the
neural network performance and even the network’s ability to
solve certain problems.

Fig. 1. Linearly separable data and the separating line (left). Note that we
don’t know if the line provides an optimal solution, which is not the case if
the sigmoid transfer function is used (right). Value of the function marked by
lightness.

The rest of the paper is organized as follows. In the next
section we inspect in more detail the geometric aspects of
neural networks, and in section 3 we introduce a way of
visualizing neural network response, which gives a good
insight into the way a network separates data. Next we discuss
some examples of activation functions, present some sample
results and conclude.

II. GEOMETRY OF DECISION

Geometrically speaking, the weight set of a single binary
neuron defines a half-space in the hyperspace of possible input
vectors. In fact, a threshold neuron is an implementation of
the characteristic function of this half-space. A set is an n-
dimensional half-space if it’s a set of vectors satisfying:

x1w1 + x2w2 + . . . + xnwn > Θ

for a collection (w1, . . . , wn) and Θ ∈ R. A single
McCulloch-Pitts perceptron works by calculating the weighted
sum of its inputs and passing it to a threshold function,
returning either one or zero, like this:

φ(x1, . . . , xn) =

{

0 ;
∑n

1 wixi ≤ Θ

1 ;
∑n

1 wixi > Θ
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where (x1, . . . , xn) is the input pattern, (w1, . . . , wn) are the
neuron’s weights. We can (and often do) interpret this as a
YES/NO answer or a binary categorial recognition.

The aim of a neuron training process is to determine a vector
of weights (with its corresponding hyperplane) that would best
separate sample input vectors of different categories. This is
not always possible as shown by the infamous XOR problem.
We’ll return to this later. If it is possible to separate the
samples, we want the solution to be as general as possible.
This means that if we add a vector that was not in the initial
training set, we expect it to be classified properly without re-
training the perceptron. This, of course, depends on the choice
of samples. If the samples are near the border hyperplane
(in the input space), there is no problem. But if the samples
are grouped around their category centers, as it would be
with many statistically collected datasets (where the typical
specimens are more likely to be selected than the others), there
is nothing that would tell us where to put the hyperplane for
optimal generalization. There is no measure of distance that
could be minimized.

Fig. 2. An example that is not linearly separable (left) and the infamous
XOR problem (right), with values of two sigmoidal functions (density from
black to white), that transform the problem to make it separable.

The modification of the neuron to provide not only a binary
(or bipolar) response, but a fuzzy value, requires specifying a
transfer function, f(x). The value returned by the neuron is
then defined as follows:

φ(x0, . . . , xn) = f(

n
∑

i=0

wixi)

Please note the lack of the threshold constant (Θ). This is
compensated for by an input (x0) with a constant value of 1
(often called a bias). The weight associated with this input
allows to control the influence of the bias on the output. This
might not seem like a simplification, but it allows to regulate
the bias weight together with other weights with a gradient
minimizing algorithm.

Not much is required from a transfer function. They usu-
ally satisfy f(0) = 0 (or f(0) = 1

2 ) and they’re usually
nondecreasing functions. It isn’t required but often practiced
that a transfer function has a range within (0, 1) or (−1, 1).
For practical purposes mentioned later, it’s practical if the
function is differentiable. It also helps if the differential is not
constant. The similarity to distribution functions is not quite
coincidental.

Equipped with a transfer function, the neuron’s output can
be interpreted in terms of fuzzy logic. It’s no longer a ’yes’
or a ’no’, but a ’maybe’, ’rather not’ or ’almost sure’ answer,
thus allowing us to maximize generalization, provided that the
training set of the input vectors is representative. The optimal
weights for a training set

T = {(xi
1, . . . , x

i
n; ci), i = 1 . . . m}

where ci ∈ {0, 1} is the category of the i−th sample, are the
ones that minimize the mean square error:

E =

m
∑

i=1

(φ(xi
0, . . . , x

i
n) − ci)2

What if there are more than two categories to separate?
Simple. For k categories, train k perceptions, each to separate
one category from the others. This parallel network of neurons
returns a vector (φ1, . . . , φk) of responses, where the category
returned by the network is the number of the output with the
highest value (the winner. This requires a different method of
training.

Training the neurons separately would require a lot of effort
to lower the activations of many neurons while increasing
one. We don’t need that. If the winner wins, we don’t need
to punish the other neurons. Thus we train the network as a
whole, punishing only the neuron that won, but shouldn’t have.
Since this method will not be the one used in the following
sections, we won’t get into any more details.

Even with transfer functions, the problem of linear sep-
arability remains. Our weight set may be the optimal for
a problem, but some inputs may be mis-categorized. If the
dataset is not linearly separable, there might exist several sets
of weights that minimize the mean square error function and
the value of the transfer function doesn’t help in case of the
badly classified vectors - it can be as low or as high as it gets.

It has been proven [4] that increasing the dimensionality of
the problem eventually makes it separable. It’s like giving the
network a hint that does not contain the answer but helps to
find one. XOR is not separable, but it gets separable if you add
the value of AND or OR as an extra input. This kind of rea-
soning led to the creation of network constructing algorithms
like the towering or pyramid algorithm where newly added
neurons are being connected not only to the inputs, but also
to the currently existing neurons. But constructing a network
via network building algorithms doesn’t prove efficient when
it comes to separating multiple categories. Instead, a more
general approach is used.

Let’s sum it up. A threshold neuron is an instance of
the characteristic function of a half-space. A neuron with a
transfer function implements a transformation φ : R

n → R

creating a fuzzy hyperplane that can be interpreted as a
fuzzy logic rule separating the data. A set of parallel neurons
corresponds to a function φ : R

n → R
m, an inter-dimensional

transformation with a transfer function applied to each vector
in all dimensions. The trained network is expected to transform
each sample vector to a vicinity of an axis in the resulting
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hyperspace corresponding to the sample’s assigned category.
If the neurons are connected serially, on the other hand, the
network computes a function φ : R

n → R that tends to
increase near the vectors it is trained to recognize, giving nice
separability and generalization, but only for one category.

A network of neurons connected parallelly into layers and
then serially between layers is referred to as a Multi Layer
Perceptron. MLPs can’t be trained like single neurons (or like
parallel networks for that matter) because they have many
layers, all of which should be trained. They can be trained part
by part in a constructive algorithm but it’s inefficient since
they work as a whole and no single part of the structure is
meant to recognize any particular part of the data, although
specialization might appear.

A trained Multi Layer Perceptron implements a transforma-
tion of R

n into R
m that moves an input vector to its corre-

sponding desired output. The transformation is the cumulative
result of transformations made by particular layers. The idea
of training an MLP is based on calculating the error (squared
difference between output and desired output) and propagating
it back - from the output layer to the layer connected to the
input. This is done with several assumptions:

• the transfer function is continuous
• the differential of the transfer function exists
• the differential has a maximum in the vicinity of zero

The weights in subsequent layers are changed depending on
to the value of the differential of the transfer function for the
current activation of the neuron. Note that the weights are not
changed if the output and the desired output coincide.

The geometric interpretation of the algorithm involves
the energy landscape. The energy landscape is simply the
multidimensional plot of the energy (error) function. It can
be visualized as an area with hills and valleys. The back-
propagation algorithm is like a ball that starts with a random
position and always tends to roll down to a local valley
(minimum). The word local is a key word here.

The rest of the paper will focus on Multi Layer Perceptrons
used to separate multiple categories of data, trained with the
back-propagation algorithm.

III. BARYCENTRIC PLOTTING

In order to investigate neural net performance, we use a
simple projection scheme - barycentric plotting. In this way we
get a lot more information about the network, than by simply
watching MSE or other error measures. Before we explain the
plot mechanism we have to make some assumptions about the
problems being solved:

• the input consists of n vectors E(i) ∈ R
s, each assigned

to one of k categories. Vector E(i) is assigned to category
Cat(i) ∈ {1 . . . k}

• the network consists of two layers. There are s inputs,
some number h of hidden neurons, and k output neurons.

• the network is trained to activate the t-th output neuron,
if the input vector E(i) is assigned to category t, while
others should not be activated. The desired output vector

corresponding to the i-th category will be denoted by
−−−−→
Cat(i) as opposed to the actual network output O(i).

Thus, the geometrical interpretation of a neural network’s
output can be easily made. A well trained network should
implement a transformation that maps some k sets from an n-
dimensional space into k diagonal vertices of a k-dimensional
unit hypercube. The geometry of data clusters in the input
space might be very sophisticated, as we only know that there
are k categories spread somewhere around the n-dimensional
space. The transformation the network implements changes
the dimensionality of the problem, and sets the samples from
each category scattered around the corresponding vertices of
the hypercube.

Although the dimensionality is often reduced by the net-
work, it still might be far too large for visualization, since
we have k (usually more than 3) categories. To overcome this
problem, we project the hypercube’s diagonal vertices into a
polygon (k-gon) as follows:

O(i)
x =

1

δ

k
∑

l=1

G
((∥

∥

∥O(i) −
−−−−→
Cat(l)

∥

∥

∥

)

; 0, σ
)

·
−−−−→
Cat(l)x

O(i)
y =

1

δ

k
∑

l=1

G
((∥

∥

∥
O(i) −

−−−−→
Cat(l)

∥

∥

∥

)

; 0, σ
)

·
−−−−→
Cat(l)y,

(1)

where δ =
∑k

l=1 G
((∥

∥

∥O(i) −
−−−−→
Cat(l)

∥

∥

∥

)

; 0, σ
)

is a nor-

malizing factor, (O
(i)
x , O

(i)
y ) are coordinates of the i-th out-

put’s projection, (
−−−−→
Cat(l)x,

−−−−→
Cat(l)y) are coordinates of the l-

th category projection (l-th vertex of the k-gon), ‖‖ is the
Euclidean norm in a k-dimensional space. G(x; 0, σ) is a
scaling function. A simple Gaussian kernel is used:

G(x; a, σ) = e−
(x−a)2

2σ
2

By making the dispersion parameter σ smaller, we can in-
vestigate the misclassified samples more thoroughly, while by
increasing it, we can get an overall view of the network’s
separation capabilities. The dispersion parameter can also
depend on the classification properties for each category. Such
adaptive scaling schemes might clear the plot up, and make
important information more visible. We introduce two adaptive
schemes:

• max-scaling, in which σ is proportional to maximum
distance of sample from its assigned category:

σ(l) = σ0 max
i∈N,Cat(i)=l

∥

∥

∥O(i) −
−−−−→
Cat(l)

∥

∥

∥ (2)

• avg-scaling, in which σ is proportional to average dis-
tance of samples from their assigned category:

σ(l) = σ0





1

M

∑

Cat(i)=l

∥

∥

∥O(i) −
−−−−→
Cat(l)

∥

∥

∥



 (3)

With the plot mechanism described above, we investigated
some differences between networks of the same architecture,
but with different activation functions.
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IV. TRANSFER FUNCTIONS

The choice of a transfer function for a problem depends on
its nature, the required precision and speed, and the chosen
training algorithm. It’s useless to try to train a network based
on functions with badly-behaved second derivatives with a
second-order backprop algorithm. Sometimes some experi-
mentation is required - with an MLP trainer and a barycentric
plotter for example.

The transfer function of a threshold neuron is the threshold
function. Since the derivative is the Dirac δ, we cannot train a
network composed of such neurons with a gradient algorithm
like the one described above. The energy landscape is not
continuous.

Neurons with a transfer function f(x) = x are often
called linear units. They just calculate the weighted sum
of the inputs (a scalar product of the input vector and the
weight vector). A layer of such neurons implements a linear
transformation via multiplying the input vector by the matrix
of the weights. Multiple layers are useless since the products of
weight matrices is a matrix - a multi-layer network composed
only of linear neurons can be replaced with a single layer with
weights based on a simple calculation. The problem of linear
separability returns. Still, linear layers are useful due to the
linear nature of the transformation they induce.

The first transfer function analyzed with our test is the
logistic sigmoid function:

SGβ(x) =
1

1 + e−βx

The logistic function is actually tanh(x) transposed from the
range (−1, 1) to (0, 1). As β approaches infinity, the function
approaches the threshold function. The differential has an
interesting property:

SG′(x) = SG(x)(1 − SG(x))

This is often used in back-propagation.

Fig. 3. Logistic transfer function (left) and its differential (right).

Another bad idea is trying to train the network to return the
extreme values - 0 and 1. Notice that σ never reaches these and
the overall effect is that the weights increase to infinity very
quickly. That, in an implementation, results in a displeasing
effect of a sudden chaos when an overflow occurs. Good target
values are 0.2 and 0.8.

The implementation of the logistic function requires cal-
culating the value of the exponential function, but in many

implementations, the function is read from a previously pre-
pared array. This speeds up the training process, although the
tabelarisation involves a choice between low memory usage
and good precision.

The logistic transfer function, like the following transfer
functions, has been tested on a 3-category 300-vector dataset
representing three four-dimensional gaussians with mean val-
ues: a1 = [1, 0, 0, 0], a2 = [0, 0, 0.5, 1], a3 = [0, 0, 0, 1] and
dispersions: σ1 = [0.5, 0.3, 0.3, 0.3], σ2 = [0.1, 0.4, 0.4, 0.4],
σ3 = [0.7, 0.3, 0.3, 0.1] respectively. For best comparison, the
presented plots were created after 100 and 200 cycles (epochs)
of training with learning rate set to 0.03, momentum set to
0. Adaptive dispersion was used, the maximum version. The
network architecture was 4-6-3 in all cases, with the initial
weights in the range of [−0.01, 0.01].

Fig. 4. The logistic function in test. Left: after 100 cycles, MSE=0.136.
Right: after 200 cycles, MSE=0.109.

The result in this case was predictable. The learning process
was a slow but steady drop of the global error while more
and more patterns joined their proper categories. The plot
shows a situation that occurs in the beginning of the training
process (and lasts until about 160 cycles). When one of the
categories gets recognized by the network, the elements of the
plot start forming a prolonging pattern. The MSE drops below
0.1 shortly after the checkpoint of 200 cycles.

The semilinear function can be regarded either as a rough
approximation of the sigmoid function or as a compromise
between the linear and the threshold function. It has certain
properties of all the three. It is the distribution function of a
uniform statistical distribution on a segment.

Fig. 5. Semilinear transfer function (left) and its differential (right).
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The formula:

SL(x) =











0 ;x < a − ∆x

x+∆x−a
2∆x

; a − ∆x ≤ x < a + ∆x

1 ; a + ∆x ≤ x

where ∆x is responsible for the slant and a centers the
function. Both can be disposed of, theoretically, since the
relative size of the weights controls the slope and the weight
of the bias node centers the function. In practice, it’s very
important to adjust the function to the initial weight dispersion
and the learning rate. If the initial weights are larger than ∆x,
you get the behavior of the threshold function. If the initial
learning rate is too big, the network might destabilize and end
the training process prematurely, returning only 0-s and 1-s.
Still, destabilization during the training process is possible.

Fig. 6. The semilinear function in test. Left: after 100 cycles, MSE=0.135.
Right: after 200 cycles, MSE=0.113.

The experiment shows a very slow decrease of the MSE,
with the in-line effect discussed before breaking after 190
cycles. After that, the MSE doesn’t seem to drop below the
0.1 barrier for at least 200 more cycles. Tests on other data
samples show better separation capabilities, especially when
multiple categories are involved.

The semiquadratic function is based on the triangular uncer-
tainty (figure 7) and approximates the sigmoid function with
two pieces of the parabola and two constant parts.

Fig. 7. Semiquadratic transfer function (left) and its differential (right).

The implementation is fast, since the only required opera-
tions are purely arithmetic and logical.

The semiquadratic function excels both in speed of calcula-
tion and in speed of training, breaking the 0.1 MSE barrier
before the 100-epoch checkpoint, then steadily proceeding
with training. The plot shows a tendency of the samples to
form a triangle that appears very early in this case.

Fig. 8. The semiquadratic function in test. Left: after 100 cycles, MSE=0.1.
Right: after 200 cycles, MSE=0.093.

The last function tested, referred to as log-exp, requires a
longer explanation. The differential is actually the difference
of two sigmoids, forming a bell-shaped plot depending on a
parameter that distances them. The function itself is a perfectly
smooth one with a controllable slope.

Fig. 9. Logarithmic-exponential transfer function (left) and its differential
(right).

The formula is:

LE(x) = 1 −
1

2b
ln

[

1 + ea−cx+b

1 + ea−cx−b

]

where, a is responsible for centering the function, b distances
the sigmoids and c is a coefficient that controls the slope. For
best results, it’s advisable to set it to a value that maximizes
the value of the differential at 0 (or rather at a).

The implementation requires calculating the exponential
function more than once, plus the natural logarithm. The
differential isn’t much better either. The training process,
unless accelerated with lookup tables, is therefore slow, but
surprisingly effective.

Fig. 10. The log-exp function in test. Left: after 100 cycles, MSE=0.058.
Right: after 200 cycles, MSE=0.048.
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Testing the network with these transfer functions shows
fast convergence. The smoothness of the function allows the
hyperplanes to adjust their position with ease. The geometry
of the transformation is clearly visible. The previously men-
tioned in-line and triangle-shape effects don’t occur. Instead,
the samples tend to move towards their categories without
wandering, until after 240 epochs, no badly classified samples
remain. This might not be unexpected in this case, as the data
was composed of gaussians, but tests on other datasets show
that this kind of functions, despite the relative amount and
complexity of calculations required, gives results far better
than the commonly-used logistic sigmoid function or the
proposed semiquadratic function.

V. SUMMARY

Transfer functions affect not only the geometry of the
transformation induced by the network, but also the amount of
calculations required and the speed of the training process as
a result. The optimal choice differs with various problems, but
some general rules can be stated. Understanding the process
of training MLPs combined the ancient scientific method of
trial and error, equipped with a barycentric plotter, helps to
chose the best transfer function and a suitable architecture.
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