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Abstract— In this paper we discuss the presence of a scale-
free property in spiking neural networks. Although as argued
in [1], [2], some biological neural networks do not reveal scale-
free nature on the level of single neurons, we believe, based on
previous research [3], that such structures should emerge on the
level of neuronal groups as a consequence of their rich dynamics
and memory properties. The network we analyze is built upon
the spiking model introduced by Eugene Izhikevich [4], [5]. It is
formed as a set of randomly constructed neuronal groups (each
group to some extent resembles the original model from [4]),
connected with Gaussian weights. Such a system exhibits rich
dynamics, with chattering, bursting and other forms of neuronal
activity, as well as global synchronization episodes. We analyze
similarities of spike trains of neurons coming from different
groups, and build a weighted graph which approximates the
similarity of activities (synchronization) of pairs of units. The
output graph reveals a scale-free structure giving support to our
claim.

I. INTRODUCTION

Connectivity plays essential role in neural models. This
fundamental property has been investigated for many years,
and now with advanced neural models and huge computa-
tional power available, its importance is even more noticeable.
Connectivity is unavoidably combined with graph theory, and
therefore research breakthroughs in the one discipline have
influence on the other. Random graph theory has experienced
a large progress in recent years with new ideas like small
world networks [6] and scale free networks, and therefore it
is important to investigate these results in context of neural
networks. The concept of scale free networks introduced in
[7], [8] provides a unifying description of a wide variety
of networks displaying the evidence of strong structuring
principles coexistent with considerable degree of randomness.
A distinctive feature of a scale-free network is that the degree
distribution of its nodes follows a power law, thus lacking a
characteristic scale in the language of statistical mechanics,
hence the name. The presence of such power laws has been
observed for a broad class of networks, prominent examples
including the World Wide Web [9], science collaboration
networks [10], citation networks [11], ecological networks
[12], linguistic networks [13] as well as cellular metabolic
networks [14] and many other ones, see [15]. With so many
examples of information processing networks displaying scale-
free structure it was rather surprising, that biological neural
networks on the level of single neurons and synapses did not

obey any power laws [1], [2] rather exhibiting exponential
decay, thus lacking scale-free property. In this paper we argue
that by switching to appropriate level of observation (neuronal
groups instead of single neurons), the result might change, and
reveal scale-free structures.

The key property required to build a scale-free network
is preferential attachment combined with model growth (see
[7]). Preferential attachment imposes that units already well
connected should have a higher probability of being attached
to other nodes. In terms of neurons this property might be
translated as follows: the more activity a unit receives, the
more active becomes and retains this activity for some period
of time, depending on the initial excitation. It is essential in
this formulation that a unit possesses a non trivial memory
of its state (amount of activity already received, and therefore
ability to become active). Although single neurons (even single
compartment dynamical models) do possess some amount of
state memory (stored in current vector of parameters in the
phase space), this is not enough to clearly exhibit preferen-
tial attachment in the sense defined above. In the following
sections we argue that things change if we move from single
neurons into neuronal groups. Such groups have opportunity
to stay active for a longer period of time, and have some
ability to store received activity by continuous excitation of a
number of units within the group and therefore have some sort
of memory of their past excitation. This property (although not
easy to clearly distinguish from other dynamical behaviors of
such a group), should lead to a certain kind of synchronization
that would result in a scale-free network of synchronizations
between the groups. These informal statements will be speci-
fied more precisely in following sections.

Theoretically speaking, for infinite simulation runs the
model growth is required, because otherwise the network
would saturate and lose scale-free property. With the models
discussed in this paper though, the over saturation can be
to a large extent neglected due to relatively short time of
simulation, therefore our model is static, although it is also
worth noting that in biological reality there are processes of
decay and growth that prevent neural networks from saturation.

In a previous work [3] we examined a model of a spike
flow graph, with simple units whose states were in N. A
system consisting of number of such units was randomly wired
(normal distribution), and equipped with an energy function as
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follows:
H(σ̄) :=

1
2

∑
i 6=j

wij |σi − σj |. (1)

Initially every unit was given some amount of potential (some
small natural number), which could be later on exchanged
between any two units under stochastic dynamics defined as
follows: at each step we randomly choose a pair of neurons
(σi, σj), i 6= j, and denote by σ̄∗ the network configuration
resulting from the original configuration σ̄ by decreasing σi

by one and increasing σj by one, that is to say by letting a unit
of potential transfer from σi to σj , whenever σi > 0. Next, if
H(σ̄∗) ≤ H(σ̄) we accept σ̄∗ as the new configuration of the
network whereas if H(σ̄∗) > H(σ̄) we accept the new config-
uration σ̄∗ with probability exp(−β[H(σ̄∗)−H(σ̄)]), β > 0,
and reject it keeping the original configuration σ̄ otherwise,
with β > 0 standing for an extra parameter of the dynamics,
referred to as the inverse temperature conforming to the usual
language of statistical mechanics. Note that this simple model
has a state memory in a sense discussed above - each unit
”knows” exactly how much potential it possesses as well as
amount of potential it receives/gives from/to other units. The
more potential a unit gains the more likely it will become more
active. By labeling each edge that was used to exchange a unit
of potential one receives a weighted graph, which displays a
scale free property as well as some other interesting properties
(see [3] for details as well as [16]).

Encouraged by this result we asked a question - is this
behavior general and can it be reproduced with spiking neural
models? For this investigation we have chosen a simple spiking
model introduced by Eugene Izhikevich in [4]. This model
given by a set of differential equations :{

v′ = 0.04v2 + 5v + 140− u + I

u′ = a(bv − u)
(2)

has been carefully tuned to be as simple and efficient as
possible (in terms of computational requirements), and yet
to resemble most of known neuronal spiking patterns and
behaviors. This computational simplicity lets one carry out
simulations with a large number of this fairly complex (in
terms of possible dynamical behaviors) spiking neurons rea-
sonably fast, and therefore it fit perfectly requirements of the
presented research project.

One of the first objectives of this research was to confirm
that single neurons do not posses enough memory1 to exhibit a
scale-free synchronization graph (roughly speaking the weight
of an edge in synchronization graph is high if the spike
trains of two units are similar and low in the other case,
this concept is explained more formally in next section). We
carried out a number of simulations with different weight
matrices, and did not obtain any graph that would exhibit a
scale-free nature (figure 4), either before or after thresholding2.
Roughly speaking, such simple systems either synchronize too

1In the sense discussed above.
2The obtained graph is weighted, thresholding is a way of creating

corresponding unweighted graph.

well, or don’t synchronize at all, whereas scale-free property
requires something in between.

Since, as expected, single neurons are not complex enough,
our second step was to construct a model of neuronal groups.
This approach is not very far from real life, since it is well
known that neurons form well connected groups, and such phe-
nomena were observed before even in the model we use in the
present paper (see [17] for example). For simplicity we have
constructed the groups randomly, with respect to some basic
properties like distinction between excitatory and inhibitory
neurons etc. (a project based on spontaneously forming groups
is currently under development). The connectivity within a
single group (about 10 to 20 neurons) was quite similar to
that presented in [4], with appropriately scaled weights to
ensure activity within a group. In every group, one neuron was
chosen to play a special role (in the sequel we will refer to it
as the group leader). This special neuron connects the group
with other groups, it forms a kind of a gateway between the
group and the rest of the model. Group leaders were connected
randomly with normal distribution (see figure 1 for conceptual
schema). The simulation was carried out with about 3000
groups (that gives about 45000 neurons) for more than 10000
steps (the coefficients in the model are tuned, so that each step
corresponds to approximately 1 ms in real time, this however is
not a key issue, since the presented model does not resemble
any particular biological network). The output seemed quite
promising right from the beginning - one look at figure 2 and
3 reveals rich neuronal behavior with global synchronization
episodes, some amount of units exhibiting bursting activity.
The striking feature of this plot is its self-similarity - in some
ways it looks like a fractal. This detail, although interesting,
was not a part of this research project - the goal was to translate
synchronizations into real numbers, use these number as graph
weights, and determine whether this graph has a scale-free
property or not. The details are yet to be described in further
sections, however this section can be concluded by giving a
positive answer to the preceding question - one glimpse at
figure 5 strongly supports the claim that the degree distribution
of a graph received from this numerical experiment follows a
power law.

II. MODEL DETAILS

As mentioned in preceding section, the simulation was
carried out for a set of 3000 groups (each consisting of 10-20
neurons - the number was chosen randomly with uniform dis-
tribution), represented by the group leaders. The connectivity
within a single group was quite similar to the one from [4],
with appropriately scaled weights, to ensure synchronization.
The ratio of excitatory/inhibitory neurons was also chosen
randomly from uniform distribution. This construction was not
based on any particular biological inspiration, the goal was to
create groups that would exhibit large variety of dynamical
behaviors. The simulation was carried out on two levels, on
both of them synchronously:

1) Initialization phase - each group was simulated syn-
chronously over one time step (1ms). The initial input
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Fig. 1. A schematic presentation of the model investigated in this paper. The
model consists of a number (about 1000-3000) of neuronal groups, connected
randomly (weights chosen from Gaussian distribution N (0, 1)) by the group
leaders - neurons chosen to interconnect every group with others. The group’s
synchronization depends on the input received from the group leader and, on
the other hand, the activity of the leader resembles the activity of the group.

to every group was 0 plus some slight Gaussian noise
(applied to every neuron independently).

2) After this phase, weighted summation of group leader
output activities is performed and given as input activity
to group leaders in the next step.

3) Each group was simulated synchronously over one time
step, with the group leader activity and a slight Gaussian
noise as an input for every neuron.

4) Steps 2 and 3 were repeated until the end of simulation
(in this case up to 12000 steps).

As an output, the simulation produced a significant number of
spike trains (3000 neurons, each over more than 10000 time
steps) that had to be compared with respect to a measure of
synchronization computed in the following manner:

1) Each spike train was blurred by a convolution with
exp

(
−

(
x
10

)2
)

kernel, see figure 8.
2) The transformed spike train of every two neurons was

then multiplied and integrated. The integral was inter-
preted as a measure of synchronization.

The blur was necessary, to assure similarity between two spike
trains that were in fact roughly similar, but corresponding
spikes were shifted by a couple of time steps in either
direction. It is worth noting that this measure strongly supports
bursting - two units giving continuous spike response in the
same time gain much similarity in the sense above. Note that
this measure is significant only if spikes actually occur, two
empty spike trains are similar in some sense, but in terms of
a proposed measure their similarity is zero.

Student Version of MATLAB

Fig. 2. Spike activity plot of 3000 group leaders during 6000ms timeframe.
Please note the global synchrony episodes as well as bursting of single units.
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Fig. 3. Magnified segment of figure 2 showing neurons 1000 to 1500 within
2000ms-3000ms timeframe. Please note the similarities of these plots (actually
it is a self-similarity). The number and length of straight horizontal lines (each
symbolizing a bursting activity) in both plots is approximately the same.

Based on the similarity measure above a symmetric weight
matrix corresponding to a weighted graph was built. The
obtained graph was a subject to further analysis, based on
a typical tools from random graph theory like degree distri-
bution, average path, number of connected components and
clustering coefficient.

III. RESULTS

The obtained graph was weighted which had its advantages
and disadvantages. We used some analytical tools for weighted
graph, and then continued with an unweighted one created by
thresholding original graph over a certain value (in this case
the average weight in a graph). The essential feature being in
the scope of this article - the scale free property was observed
in either case. For the weighted graph the node degree was
defined simply as sum of weights of edges adjacent to that
node. For the unweighted graph we used the usual definition
(number of edges adjacent to a node). In both graphs the
degree distribution followed a power law, with exponent of
about 2, in the weighted case there were some slight deviations
- the power law was slightly violated near the plot limits. This
however is not very surprising, since such disturbances are



Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

Dr
aft

107.44 107.46 107.48 107.5 107.52
100

101

102
Degree histogram

Degree

Nu
m

be
r o

f n
od

es

Student Version of MATLAB

103 104 105
100

101

102
Degree histogram

Degree

Nu
m

be
r o

f n
od

es

Student Version of MATLAB

Fig. 4. Example degree distributions of synchronization graphs produced by
a network of spiking neurons for different coupling regimes. Certainly these
graphs do not exhibit a scale-free property.

present in a number of other scale free networks, especially
of medium size like the one investigated in this paper. These
artifacts appear due to under/over saturation of high/low degree
nodes, due to finite time of simulation. In the unweighted case
these fluctuations are even less significant due to thresholding.
In order to gain confidence, the simulation was repeated a
number of times, the results were always similar.

The power law exponent is roughly 2, but some further
computations and averaging is required to provide a better
estimate.

Note that as expected - more active units (the activity
is measured as an integral of spike train convolved with
exp

(
−

(
x
10

)2
)

kernel, as previously) gain more neighbors
in the output graph (either weighted or unweighted). This
is clearly visible in figure 6 and evidently supports our
hypothesis of the presence of preferential attachment principle
in the model.

The unweighted graph formed a single3 connected compo-
nent (possibly with some number of abandoned nodes).

The interesting feature of the thresholded graph is its very
high clustering coefficient - this graph is very well clustered.
What’s more, the clustering coefficient exhibits a surprisingly
regular dependence on degree (see figure 7, which displays this
dependency as well as the corresponding dependency obtained
from Erdős-Rényi random graph with similar connection
density), which suggests that lower degree nodes are nearly
fully clustered but after reaching certain degree threshold, the
clustering coefficient drops dramatically leaving high degree
nodes almost unclustered. This gives an interesting insight
into graph structure, but it is not yet obvious whether this
dependency is an artifact of graph thresholding or is it some
general property of these networks.

It is worth noting that the resulting graph also had a
small world property - high clustering coefficient (about a
magnitude higher than in corresponding Erdős-Rényi random
graph) combined with short average path length (depending
on the thresholding level, the average path varied from about
2 to 4 nodes, so the connectivity is nearly perfect). Again this
might not be very surprising in context of already published

3This obviously depends on the thresholding level. As the threshold grew,
the more nodes became abandoned (”abandoned” in the sense ”not connected
to anyone”), but still a single giant connected component was present.
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Fig. 5. The degree distributions of a network received from the model (left),
and one obtained by thresholding original network at an average weight (right)
in order to produce an unweighted graph. In either case the presence of a
power law with exponent of about 2 is quite clear. Please note the significant
difference between these plots and the ones showed in figure 4.
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Fig. 6. The dependency between spiking activity and vertex degree before
(left) and after thresholding the graph (right). In either case we observe
a clearly monotone dependency which supports our preferential attachment
hypothesis.

results [18] and the fact that scale-free networks exhibit small
world phenomenon quite naturally.

IV. CONCLUSION

In this paper an interpretation of preferential attachment
for dynamical behavior in a spiking neural network was
introduced. This interpretation sets the following constraints to
dynamic behavior: the more activity a unit receives, the more
active it becomes and retains this activity for some period
of time, depending on the initial excitation. We claim that
this property, first analyzed in discrete setup in [3], cannot
be successfully reproduced with single neurons (even fairly
complex dynamical spiking neurons e.g. those introduced in
[4]). Artificially created neuronal groups however, seem to
have dynamics rich enough to exhibit such property, since
they clearly constitute a scale-free network of spike train
similarities as presented in previous sections. It is worth noting
that the state memory property discussed above might not be
easy to observe in direct analysis of the group dynamics - it
can be hidden behind rich dynamical behavior of the group,
and reveal itself only in terms of statistics. A further research
is required to determine, whether spontaneously developing
neuronal groups inherit similar properties (this is a subject of
ongoing examination). Additional analysis of connectivity in
biological neural networks on the level of neuronal groups of
an appropriate size (or synchronization properties) should give
more insight into issues discussed in this article, and possibly
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Fig. 7. Clustering coefficient as a function of degree in the investigated
network. This plot is interesting, since such behavior of clustering coefficient
is rather rare - the nodes of small degrees are well clustered whereas those
with high degree are not. Compare with box 2 in [19]. The black-circle plot
depicts this dependency obtained from Erdős-Rényi random graph with similar
number of edges.
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Fig. 8. Spike activity convolved with exp
“
−

`
x
10

´2
”

kernel. This procedure
blurs the spike train significantly, but lets one receive non zero product of two
of such trains even if corresponding spikes are shifted. The product is later
integrated to obtain synchronization strength, a measure we introduced to
describe similarity between spike trains.

give empirical support to this theoretical/computational anal-
ysis.
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