
     Abstract  In this paper we discuss the presence of a scale-free property in spiking 
neural networks. Although as argued in [1], [2], some biological neural networks do not 
reveal scale-free nature on the level of single neurons, we believe, based on previous 
research [3] and numerical simulations presented in this article, that such structures 
should emerge on the level of neuronal groups as a consequence of their rich dynamics and 
memory properties. The network we analyze is built upon the spiking model introduced by 
Eugene Izhikevich [4], [5]. It is formed as a set of randomly constructed neuronal groups 
(each group to some extent resembles the original model from [4]), connected  with 
Gaussian weights. Such a system exhibits rich dynamics, with chattering, bursting and 
other forms of neuronal activity, as well as global 
synchronization episodes. We analyze similarities of 
spike trains of neurons coming from different 
groups, and build a weighted graph which 
approximates the similarity of  activities 
(synchronization) of pairs of units. The output graph 
reveals a scale-free structure  giving support to our 
claim.
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Fig. 1.   A schematic presentation of the model investigated in this pa-
per. The model consists of a number (about 1000-3000) of neuronal 
groups, connected randomly (weights chosen from Gaussian distribu-
tion  N(0,1)) by the group leaders - neurons chosen to interconnect 
every group with others. The group's synchronization depends on the 
input received from the group leader and, on the other hand, the activ-
ity of the leader resembles the activity of the group.
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Fig. 4.   Example degree distributions of synchronization graphs produced by a network of spiking neurons for different coupling regimes. 
Certainly these graphs do not exhibit a scale-free property.
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Fig. 2.   Example of spike activity plot of 3000 group leaders during 
6000ms timeframe (only the activity of group leaders is plotted). Note 
the global  synchrony episodes as well as bursting of single units.
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Fig. 3.   Magnified segment of figure 2 showing neurons 1000 to 1500 
within 2000ms-3000ms timeframe. Please note the similarities of these 
plots (actually it is a self-similarity). The number and length of straight 
horizontal lines (each symbolizing a bursting activity) in both plots is 
approximately the same. 
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Fig. 5.   The degree distributions of a network received from the model (left), and one obtained by thresholding original network at an aver-
age weight (right) in order to produce an unweighted graph. In either case the presence of a power law with exponent of about 2 is quite 
clear. Note the significant difference between these plots and the ones showed in figure 4. 
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Fig. 6.   The dependency between  spiking activity and vertex degree before (left) and after thresholding  the graph (right). In either case we 
observe a clearly monotone dependency which supports our preferential attachment hypothesis.
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Fig. 8.   Spike activity convolved with exp
(
−

(
x
10

)2
)

 kernel. This proce-
dure blurs the spike train significantly, but lets one receive non zero prod-
uct of two of such trains even if corresponding spikes are shifted. The 
product is later integrated to obtain synchronization strength, a measure 
we introduced to describe similarity between spike trains. 

10
0

10
1

10
2

10
3

10
4

10
!2

10
!1

10
0

Clustering coefficient as a function of degree

Degree

C
lu

s
te

ri
n
g
 c

o
e
ff
ic

ie
n
t

 

 

Analyzed network

Corresponding Erdos!Renyi network

Student Version of MATLAB

Fig. 7.   Clustering coefficient as a function of degree in the investigated 
network. This plot is interesting, since such behavior of clustering coeffi-
cient is rather rare - the nodes of small degrees are well clustered whereas 
those with high degree are not. Compare with box 2 in [19].  The black-
circle plot depicts this dependency obtained from  Erdős-Rényi random 
graph with similar number of edges.
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DYNAMICS
The simulation was carried out on two levels, on both of them synchronously:

•  Initialization phase - each group was simulated synchronously over one 
time step (1ms). The initial input to every group was 0 plus some slight 
Gaussian noise (applied to every neuron independently).

•  After this phase,  weighted summation of group leader output activities 
is performed and given as input activity to group leaders in the next step.

•  Each group was simulated synchronously over one time step, with the 
group leader activity and a slight Gaussian noise as an input for every 
neuron.

•  Steps 2 and 3 were repeated until the end of simulation (in this case up 
to 12000 steps). 

As an output, the simulation produced a significant number of spike trains 
(3000 neurons, each over more than 10000 time steps) that had to be com-
pared with respect to a measure of synchronization computed in the following 
manner:

•  Each spike train was blurred by a convolution with kernel exp
(
−

(
x
10

)2
)
, 

see figure 2. 
•  The transformed spike train of every two neurons was then multiplied 

and integrated. The integral (real number) was interpreted as a measure 
of synchronization.

The blur was necessary, to assure similarity between two spike trains that 
were in fact roughly similar, but corresponding spikes were shifted by several 
of time steps in either direction. It is worth noting that this measure strongly 
supports bursting - two units giving continuous spike response in the same 
time gain much similarity in the  sense above. Note that this measure is sig-
nificant only if spikes actually occur, two empty spike trains are similar in 
some sense, but  in terms of a proposed measure their similarity is zero.

INTRODUCTION

This research is based on previous results presented in [3], which dealt with a discreete model, 
that resembled to some extent Hopfield model.  In this previous work we examined a model of 
a spike flow graph, with simple units whose states were in N. A system consisting of number of 
such units was randomly wired (normally distributed weights), and equipped with an energy 
function as follows:

H(σ̄) :=
1
2

∑

i !=j

wij |σi − σj |.

Initially every unit was given some amount of potential (some small natural number), which 
could be later on exchanged between any two units under stochastic dynamics defined as 
follows: at each step we randomly choose a pair of neurons (σi, σj), i != j, and denote by σ̄∗ 
the network configuration resulting from the original configuration σ̄ by decreasing σi  by one 
and increasing σj  by one, that is to say by  letting a unit of potential transfer from σi  to σj , 
whenever σi > 0 . Next, if  H(σ̄∗) ≤ H(σ̄)  we accept σ̄∗  as the new configuration of the 
network whereas if  H(σ̄∗) > H(σ̄)  we accept the new configuration σ̄∗  with probability 
exp(−β[H(σ̄∗)−H(σ̄)]), β > 0,  and reject it keeping the original configuration σ̄otherwise, 
with β > 0  standing for an extra parameter of the dynamics, referred to as the inverse 
temperature conforming to the usual language of statistical mechanics. Note that this simple 
model has a state memory in a sense  discussed above - each unit ''knows'' exactly how much 
potential it possesses as well as amount of potential it receives/gives from/to other units. The 
more potential a unit gains the more likely it will become more active. By labeling each edge 
that was used to exchange a unit of potential one receives a weighted graph, which displays a 
scale free property as well as some other interesting properties (see [3] for details as well as 
[16]).

Encouraged by this result we asked a question - is this behavior general and can it be 
reproduced with spiking neural models? For this investigation we have chosen a simple spiking 
model introduced by Eugene Izhikevich in [4]. This model given by a set of differential 
equations :

{
v′ = 0.04v2 + 5v + 140− u + I

u′ = a(bv − u)

This model given by a set of differential equations above has been carefully tuned to be as 
simple and efficient as possible (in terms of computational requirements), and yet to resemble 
most of known neuronal spiking patterns and behaviors. This computational simplicity lets one 
carry out simulations with a large number of this fairly complex (in terms of possible 
dynamical behaviors) spiking neurons reasonably fast, and therefore it fit perfectly 
requirements of the presented research project.

RESULTS AND CONCLUSIONS

The obtained graph was weighted which had its advantages and disadvantages. We 
used some analytical tools for weighted graph, and then continued with an 
unweighted  one created by thresholding original graph over a certain value (in this 
case the average weight in a graph). The essential feature being in the scope of this 
article - the scale free property was observed in either case. For the weighted graph 
the node degree was defined simply as sum of weights of edges adjacent to that 
node. For the unweighted graph we used the usual definition (number of edges 
adjacent to a node). In both graphs the degree distribution followed a power law, 
with exponent of about 2, in the weighted case there were some slight deviations - 
the power law was slightly violated near the plot limits. This however is not very 
surprising, since such disturbances are present in a number of other scale free 
networks, especially of medium size like the one investigated in this paper. These 
artifacts appear due to under/over saturation of  high/low degree nodes, due to finite 
time of simulation. In the unweighted case these fluctuations are even less 
significant due to thresholding. In order to gain confidence (and avoid possible 
statistical disturbance), the simulation was repeated a number of times (about 30 for 
each set of parameters), the results were always very similar.
The power law exponent is roughly ~2, but some further computations and 
averaging is required to provide a better estimate.  
Note that as expected - more active units (the activity is measured as an integral of 

spike train convolved with  exp
(
−

(
x
10

)2
)

 kernel, as previously) gain more neighbors 
in the output graph (either weighted or unweighted). This is clearly visible in figure 
6 and evidently supports our hypothesis of the presence of preferential attachment 
principle in the model. The unweighted graph formed a single connected component 
(possibly with some number of abandoned nodes). The interesting feature of the 
thresholded graph is its very high clustering coefficient - this graph is very well 
clustered. What's more, the clustering coefficient exhibits a surprisingly regular 
dependence on degree (see figure 7, which displays this dependency as well as the 
corresponding dependency obtained from   Erdős-Rényi random graph with similar 
connection density), which suggests that lower degree nodes are nearly fully 
clustered but after reaching certain degree threshold (in the case of presented 

simulation the threshold is of about 102, but this value most probably depends on the 
system size), the clustering coefficient drops dramatically leaving high degree nodes 
almost unclustered. This gives an interesting insight into graph structure, but it is 
not yet obvious whether this dependency is an artifact of graph thresholding or is it 
some general property of these networks. 

It is worth noting that the resulting graph also had a small world property - high 
clustering coefficient as discussed above (about a magnitude higher than in 
corresponding  Erdős-Rényi  random graph) combined with short average path 
length (depending on the thresholding level, the average path varied from about 2 to 
4 nodes, so the connectivity is nearly perfect). Again this might not be very 
surprising in context of already published results [18] and the fact that scale-free 
networks exhibit small world phenomenon quite naturally.

In this paper an interpretation of preferential attachment for dynamical behavior in a 
spiking neural network was introduced. This interpretation sets the following 
constraints to dynamic behavior:  the more activity a unit receives, the more active it  
becomes and retains this activity for some period of  time, depending on the initial 
excitation. We claim that this property, first analyzed in discrete setup in [3], cannot 
be successfully reproduced with single neurons (even fairly complex dynamical 
spiking neurons e.g. those introduced in [4]). Artificially created neuronal groups 
however, seem to have dynamics rich enough to exhibit such property, since they 
clearly constitute a scale-free network of spike train similarities as presented in 
previous sections. It is worth noting that the state memory property discussed above 
might not be easy to observe in direct analysis of the group dynamics - it can be 
hidden behind rich dynamical behavior of the group, and reveal itself only in terms 
of statistics. It is important to note that these results were obtained in simulation, 
theoretical foundations of presented phenomenon (as well as combining the discrete 
and continuous models)  are now being a subject of ongoing research. Further 
investigation is required to determine, whether  spontaneously developing neuronal 
groups [17] inherit similar properties (this as well is a subject of ongoing 
examination). Additional analysis of connectivity in biological neural networks on 
the level of neuronal groups of an appropriate size (or synchronization properties) 
should give more insight into issues discussed in this article, and possibly give 
empirical support to this theoretical/computational analysis. 
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DETAILS

One of the first objectives of this research was to confirm that single neurons 
do not posses enough memory1 to exhibit a scale-free synchronization graph 
(informally, the weight of an edge in synchronization graph is high if the spike 
trains of two units are similar and low in the other case, this concept  is 
explained more formally in next section). We carried out a number of 
simulations with different weight matrices, and did not obtain any graph that 
would exhibit a scale-free nature (figure 4), either before or after 
thresholding2. It seems that such simple systems either synchronize too well, 
or don't synchronize at all, whereas scale-free property requires something in 
between. 

Since,  as expected, single neurons are not complex enough, our second step 
was to construct a model of neuronal groups.  This approach is not very far 
from real life, since it is well known that neurons form well connected groups, 
and such phenomena were observed before even in the model we use in the 
present paper (see [17] for example). For simplicity we have constructed the 
groups randomly, with respect to some basic properties like distinction 
between excitatory and inhibitory neurons etc. (a project based on 
spontaneously forming groups is currently under development). The 
connectivity within a single group (about 10 to 20 neurons) was quite similar 
to that presented in [4], with appropriately  scaled weights to ensure activity 
within a group. In every group, one neuron was chosen to play a special role 
(in the sequel we will refer to it as the group leader). This special neuron 
connects the group with other groups, it forms a kind of a gateway between 
the group and the rest of the model. Group leaders were connected randomly 
with normal distribution (see figure 1 for conceptual schema). The simulation 
was carried out with about 3000 groups (that gives about 45000 neurons) for 
more than 10000 steps (the coefficients in the model are tuned, so that each 
step corresponds to approximately 1 ms in real time, this however is not a key 
issue, since the presented model does not resemble any particular biological 
network). The output seemed quite promising right from the beginning - figure 
2 and 3 reveals rich neuronal behavior with global synchronization episodes, 

some amount of units exhibiting bursting activity. The striking feature of this 
plot is its self-similarity - in some ways it looks like a fractal. This detail, 
although interesting, was not a part of this research project - the goal was to 
translate synchronizations into real numbers, use these number as graph 
weights, and determine whether this graph has a scale-free property or not. 
The details are yet to be described in further sections, however this section can 
be concluded by giving a positive answer to the preceding question -  figure 5 
strongly supports the claim that the degree distribution of a graph received 
from this numerical experiment follows a power law (similar plot was 
obtained in a number of simulations).

As mentioned in preceding paragraph, the simulation was carried out for a set 
of 3000 groups (each consisting of 10-20 neurons - the number was chosen 
randomly with uniform distribution), represented by the group leaders. The 
connectivity within a single group was quite similar to the one from [4], with 
appropriately scaled weights, to ensure synchronization. The ratio of 
excitatory/inhibitory neurons was also chosen randomly from uniform 
distribution. Note that this construction was not based on any particular 
biological inspiration since the goal of this research was rather to find a link 
between the simple discrete model and more complex continuos dynamical 
one, than mimicking the biological complexity. The next steps of this project 
would be to create more and more biologically feasible models that would still 
exhibit the scale-free property, for that however, it is essential to know what 
dynamical features of these models are responsible for emergence the scale-
free phenomenon. 

Based on the similarity measure defined in DYNAMICS box on the left,  a 
symmetric weight matrix corresponding to a weighted graph was built. The 
obtained graph was  subject to further analysis, based on  typical tools from 
random graph theory like degree distribution, average path, number of 
connected components and clustering coefficient.  

1 In the sense discussed above.

2 The obtained graph is weighted, thresholding is a way  of creating corresponding 
unweighted graph.
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